Maria C. Fernandes-Martins, Carli Springer, Daniel R. Colman, Eric S. Boyd
{"title":"Acquisition of elemental sulfur by sulfur-oxidising Sulfolobales","authors":"Maria C. Fernandes-Martins, Carli Springer, Daniel R. Colman, Eric S. Boyd","doi":"10.1111/1462-2920.16691","DOIUrl":null,"url":null,"abstract":"<p>Elemental sulfur (S<sub>8</sub><sup>0</sup>)-oxidising Sulfolobales (Archaea) dominate high-temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S<sub>8</sub><sup>0</sup>-oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S<sub>8</sub><sup>0</sup> disproportionating enzyme attributed to S<sub>8</sub><sup>0</sup> oxidation. Here, we report the S<sub>8</sub><sup>0</sup>-dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S<sub>8</sub><sup>0</sup> during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S<sub>8</sub><sup>0</sup> oxidation in the SOR-encoding strain. This is attributed to the generation of hydrogen sulfide (H<sub>2</sub>S) from S<sub>8</sub><sup>0</sup> disproportionation that can diffuse out of the cell to solubilise bulk S<sub>8</sub><sup>0</sup> to form soluble polysulfides (S<sub><i>x</i></sub><sup>2−</sup>) and/or S<sub>8</sub><sup>0</sup> nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S<sub>8</sub><sup>0</sup>, which could be overcome by the addition of H<sub>2</sub>S. High concentrations of S<sub>8</sub><sup>0</sup> inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16691","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elemental sulfur (S80)-oxidising Sulfolobales (Archaea) dominate high-temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S80-oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S80 disproportionating enzyme attributed to S80 oxidation. Here, we report the S80-dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S80 during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S80 oxidation in the SOR-encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S80 disproportionation that can diffuse out of the cell to solubilise bulk S80 to form soluble polysulfides (Sx2−) and/or S80 nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S80, which could be overcome by the addition of H2S. High concentrations of S80 inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens