{"title":"Bistatic Doppler Frequency Estimation With Asynchronous Moving Devices for Integrated Sensing and Communications","authors":"Gianmaria Ventura;Zaman Bhalli;Michele Rossi;Jacopo Pegoraro","doi":"10.1109/LWC.2024.3451298","DOIUrl":null,"url":null,"abstract":"In this letter, we present for the first time a method to estimate the bistatic Doppler frequency of a target with clock asynchronous and mobile Integrated Sensing And Communication (ISAC) devices. Existing approaches have separately tackled the presence of phase offsets due to clock asynchrony or the additional Doppler shift due to device movement. However, in real ISAC scenarios, these two sources of phase nuisance are concurrently present, making the estimation of the target’s Doppler frequency particularly challenging. Our method solves the problem using the sole wireless signal at the receiver, exploiting the invariance of phase offsets across multipath components and the bistatic geometry in an original way. The proposed method is validated via simulation, exploring the impact of different system parameters. Numerical results show that our approach is a viable way of estimating Doppler frequency in bistatic asynchronous ISAC scenarios with mobile devices.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"13 10","pages":"2872-2876"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654288","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654288/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we present for the first time a method to estimate the bistatic Doppler frequency of a target with clock asynchronous and mobile Integrated Sensing And Communication (ISAC) devices. Existing approaches have separately tackled the presence of phase offsets due to clock asynchrony or the additional Doppler shift due to device movement. However, in real ISAC scenarios, these two sources of phase nuisance are concurrently present, making the estimation of the target’s Doppler frequency particularly challenging. Our method solves the problem using the sole wireless signal at the receiver, exploiting the invariance of phase offsets across multipath components and the bistatic geometry in an original way. The proposed method is validated via simulation, exploring the impact of different system parameters. Numerical results show that our approach is a viable way of estimating Doppler frequency in bistatic asynchronous ISAC scenarios with mobile devices.
期刊介绍:
IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.