Shu‐Yu Liang, Yue‐Feng Liu, Zhi‐Kun Ji, Hong Xia, Hong‐Bo Sun
{"title":"Multi‐Mode Elastic Full‐Color Fluorescent Patterns for Multi‐Visual Encryption","authors":"Shu‐Yu Liang, Yue‐Feng Liu, Zhi‐Kun Ji, Hong Xia, Hong‐Bo Sun","doi":"10.1002/lpor.202400307","DOIUrl":null,"url":null,"abstract":"The development of multi‐mode fluorescent patterns has attracted widespread attention, particularly for applications in high‐density information storage and highly secure encryption. However, the fabrication process of multi‐mode fluorescent patterns generally involves tedious and expensive steps. Specifically, in the fabrication technology of elastic full‐color fluorescent patterns, there is still a lack of ideal patterning preparation technology that can overcome the solvent orthogonality problem associated with multi‐color fabrication while ensuring both high elasticity and luminescence efficiency of the pattern. Herein, the multi‐mode elastic fluorescent patterns are successfully fabricated by multiple transferring of the quantum dots (QDs) from the carrier substrates to the elastomeric PDMS substrate via femtosecond laser‐induced forward transfer (FsLIFT) technology. Due to its solvent‐free nature, absence of masking requirements, and no need for annealing during FsLIFT processing, the multiple transferred QD films achieve independent patterns and does not interfere with each other, providing a strong promise for the fabrication of multi‐mode elastic full‐color patterns. Based on these stretchable fluorescent patterns, multi‐visual encryption techniques are successfully demonstrated. The proposed FsLIFT technology offers an efficient and straightforward strategy for fabricating multi‐mode fluorescent patterns with potential applications in advanced commercial security information encryption and dynamic camouflage.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400307","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of multi‐mode fluorescent patterns has attracted widespread attention, particularly for applications in high‐density information storage and highly secure encryption. However, the fabrication process of multi‐mode fluorescent patterns generally involves tedious and expensive steps. Specifically, in the fabrication technology of elastic full‐color fluorescent patterns, there is still a lack of ideal patterning preparation technology that can overcome the solvent orthogonality problem associated with multi‐color fabrication while ensuring both high elasticity and luminescence efficiency of the pattern. Herein, the multi‐mode elastic fluorescent patterns are successfully fabricated by multiple transferring of the quantum dots (QDs) from the carrier substrates to the elastomeric PDMS substrate via femtosecond laser‐induced forward transfer (FsLIFT) technology. Due to its solvent‐free nature, absence of masking requirements, and no need for annealing during FsLIFT processing, the multiple transferred QD films achieve independent patterns and does not interfere with each other, providing a strong promise for the fabrication of multi‐mode elastic full‐color patterns. Based on these stretchable fluorescent patterns, multi‐visual encryption techniques are successfully demonstrated. The proposed FsLIFT technology offers an efficient and straightforward strategy for fabricating multi‐mode fluorescent patterns with potential applications in advanced commercial security information encryption and dynamic camouflage.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.