Hypercomplex Representation of Finite-Dimensional Unital Archimedean f-Algebras

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Sayed Kossentini
{"title":"Hypercomplex Representation of Finite-Dimensional Unital Archimedean f-Algebras","authors":"Sayed Kossentini","doi":"10.1007/s00006-024-01352-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we characterize all <i>N</i>-dimensional hypercomplex numbers having unital Archimedean <i>f</i>-algebra structure. We use matrix representation of hypercomplex numbers to define an order structure on the matrix spectra. We prove that the unique (up to isomorphism) unital Archimedean <i>f</i>-algebra of hypercomplex numbers of dimension <span>\\(N \\ge 1\\)</span> is that with real and simple spectrum. We also show that these number systems can be made into unital Banach lattice algebras and we establish some of their properties. Furthermore, we prove that every 2<i>N</i>-dimensional unital Archimedean <i>f</i>-algebra is the <i>hyperbolization</i> of that of dimension <i>N</i>. Finally, we consider hypercomplex number systems of dimension <span>\\(N=2,3,4,6\\)</span> and give their explicit matrix representation and eigenvalue operators. This work is a multidimensional generalization of the results obtained in Gargoubi and Kossentini (Adv Appl Clifford Algebras 26(4):1211–1233, 2016) and Bilgin and Ersoy S (Adv Appl Clifford Algebras 30:13, 2020) for, respectively, the two and four-dimensional systems.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01352-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01352-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we characterize all N-dimensional hypercomplex numbers having unital Archimedean f-algebra structure. We use matrix representation of hypercomplex numbers to define an order structure on the matrix spectra. We prove that the unique (up to isomorphism) unital Archimedean f-algebra of hypercomplex numbers of dimension \(N \ge 1\) is that with real and simple spectrum. We also show that these number systems can be made into unital Banach lattice algebras and we establish some of their properties. Furthermore, we prove that every 2N-dimensional unital Archimedean f-algebra is the hyperbolization of that of dimension N. Finally, we consider hypercomplex number systems of dimension \(N=2,3,4,6\) and give their explicit matrix representation and eigenvalue operators. This work is a multidimensional generalization of the results obtained in Gargoubi and Kossentini (Adv Appl Clifford Algebras 26(4):1211–1233, 2016) and Bilgin and Ersoy S (Adv Appl Clifford Algebras 30:13, 2020) for, respectively, the two and four-dimensional systems.

有限维单元阿基米德 f 结构的超复数表示
在本文中,我们描述了所有 N 维超复数的特征,这些超复数都具有单素阿基米德 f 代数结构。我们使用超复数的矩阵表示来定义矩阵谱上的阶结构。我们证明,维数为\(N \ge 1\) 的超复数的唯一(直到同构)单元阿基米德 f-algebra 是具有实谱和简谱的。我们还证明了这些数系可以被做成单素巴拿赫晶格代数,并建立了它们的一些性质。最后,我们考虑了维数为(N=2,3,4,6)的超复数系统,并给出了它们的显式矩阵表示和特征值算子。这项工作是对 Gargoubi 和 Kossentini (Adv Appl Clifford Algebras 26(4):1211-1233, 2016) 以及 Bilgin 和 Ersoy S (Adv Appl Clifford Algebras 30:13, 2020) 分别针对二维和四维系统所取得结果的多维推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信