{"title":"Photocatalytic activity of selenium decorated graphitic carbon nitride nanocomposites for dye Industries wastewater remediation","authors":"","doi":"10.1016/j.gsd.2024.101317","DOIUrl":null,"url":null,"abstract":"<div><p>In situ selenium-doped graphitic carbon nitride, also known as Se-g-C<sub>3</sub>N<sub>4</sub>(SCN), were created in the current study by employing inexpensive urea and selenium metal powder as precursor materials. SEM (scanning electron microscopy), XRD (X-ray diffraction), FTIR (Fourier-transform infrared spectroscopy), as well as TEM (transmission electron microscopy) techniques were utilized to describe the morphological characteristics, optical characteristics, and structural characteristics of the treated photocatalyst. Because of its potential use in photocatalytic environmental pollution remediation, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), a metal-free photocatalyst, has received a lot of interest. This work not only offers a straightforward method to improve the photocatalytic performance for g-C<sub>3</sub>N<sub>4</sub> but also creates a new path for the logical preparation of efficient polymeric photocatalysts. The results demonstrate that does not alter the crystalline structure of the sample but instead increases the surface area of g-C<sub>3</sub>N<sub>4</sub> by dispersing it widely. Three different photocatalytic composites of g-C<sub>3</sub>N<sub>4</sub> and SeNPs in the mass ratios of 1:1, 2:1, and 3:1, denoted SCN1, SCN2, and SCN3, were created for the methylene blue (MB) and methyl orange (MO) photodegradation. The combined photocatalytic degradation rate of MB after 150 min in visible light (500–800 nm) was 52.4% for g-C<sub>3</sub>N<sub>4</sub>, 75.4% for SCN1, 87.8% for SCN2, and 81.3% for SCN3. For methyl orange, the photocatalytic activity of produced materials was also investigated. The analysis's outcome reveals astonishing deterioration values were 45.6% for g-C<sub>3</sub>N<sub>4</sub>, SCN1 (62.5%), SCN2 (74.1%), and SCN3(68.5%), respectively. The synthesized photocatalyst offers great potential for the effective removal of dye industeries wastewater remediation.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In situ selenium-doped graphitic carbon nitride, also known as Se-g-C3N4(SCN), were created in the current study by employing inexpensive urea and selenium metal powder as precursor materials. SEM (scanning electron microscopy), XRD (X-ray diffraction), FTIR (Fourier-transform infrared spectroscopy), as well as TEM (transmission electron microscopy) techniques were utilized to describe the morphological characteristics, optical characteristics, and structural characteristics of the treated photocatalyst. Because of its potential use in photocatalytic environmental pollution remediation, graphitic carbon nitride (g-C3N4), a metal-free photocatalyst, has received a lot of interest. This work not only offers a straightforward method to improve the photocatalytic performance for g-C3N4 but also creates a new path for the logical preparation of efficient polymeric photocatalysts. The results demonstrate that does not alter the crystalline structure of the sample but instead increases the surface area of g-C3N4 by dispersing it widely. Three different photocatalytic composites of g-C3N4 and SeNPs in the mass ratios of 1:1, 2:1, and 3:1, denoted SCN1, SCN2, and SCN3, were created for the methylene blue (MB) and methyl orange (MO) photodegradation. The combined photocatalytic degradation rate of MB after 150 min in visible light (500–800 nm) was 52.4% for g-C3N4, 75.4% for SCN1, 87.8% for SCN2, and 81.3% for SCN3. For methyl orange, the photocatalytic activity of produced materials was also investigated. The analysis's outcome reveals astonishing deterioration values were 45.6% for g-C3N4, SCN1 (62.5%), SCN2 (74.1%), and SCN3(68.5%), respectively. The synthesized photocatalyst offers great potential for the effective removal of dye industeries wastewater remediation.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.