{"title":"Investigation of mechanical properties and high temperature wear resistance of CoFeNi1.5VZr0.4Six high entropy alloys optimized by Si alloying","authors":"","doi":"10.1016/j.triboint.2024.110165","DOIUrl":null,"url":null,"abstract":"<div><p>The current work studies the mechanical properties and high-temperature wear resistance of CoFeNi<sub>1.5</sub>VZr<sub>0.4</sub>Si<sub>x</sub> high entropy alloys by Si alloying. The Si alloying transforms Ni<sub>7</sub>Zr<sub>2</sub> into a more wear-resistant silicide phase, and the microstructure changes from lamellar eutectic structure to dendritic structure. The high temperature microhardness, compressive strength and fracture toughness of the HEAs increase first and then decrease with the increasing Si content. The Si alloying in HEAs brings about significant improvements in wear resistance at elevated temperature through the combined effects of phase structure modifications and compositional changes in the tribo-layer. The augmented mechanical properties of the worn subsurface layer contribute to improved wear resistance at elevated temperatures.</p></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24009174","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current work studies the mechanical properties and high-temperature wear resistance of CoFeNi1.5VZr0.4Six high entropy alloys by Si alloying. The Si alloying transforms Ni7Zr2 into a more wear-resistant silicide phase, and the microstructure changes from lamellar eutectic structure to dendritic structure. The high temperature microhardness, compressive strength and fracture toughness of the HEAs increase first and then decrease with the increasing Si content. The Si alloying in HEAs brings about significant improvements in wear resistance at elevated temperature through the combined effects of phase structure modifications and compositional changes in the tribo-layer. The augmented mechanical properties of the worn subsurface layer contribute to improved wear resistance at elevated temperatures.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.