Influence of SU-8 curing parameters on the terahertz absorption characteristics

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
{"title":"Influence of SU-8 curing parameters on the terahertz absorption characteristics","authors":"","doi":"10.1016/j.polymer.2024.127555","DOIUrl":null,"url":null,"abstract":"<div><p>A plethora of polymers are excellent candidates that can be utilized to build various terahertz (THz) based systems for sensing and microfluidics. SU-8 is a versatile epoxy-based polymer with excellent properties, such as biocompatibility and good mechanical properties. Nevertheless, the impact of curing parameters on the THz absorption characteristics of SU-8 remains uncertain. This study explores the impact of various curing conditions on the THz absorption properties of SU-8. The aim is to establish a correlation between THz absorption and the polymer's cross-linking characteristics. Therefore, three key curing parameters have been examined: time, temperature, and ultraviolet (UV) exposure dose. The SU-8 samples that are cured under different conditions are examined using THz Time-Domain Spectroscopy (THz-TDS) to estimate the THz absorption coefficient. Next, the swelling experiment is conducted to evaluate the polymer cross-linking of the cured samples. The results show that curing conditions and, thus, cross-linking routines significantly influence THz wave propagation and attenuation within SU-8 samples. The findings recommended using an optimal curing dose for SU-8 spanning 1240 mJ/cm<sup>2</sup> to 1860 mJ/cm<sup>2</sup> which results in a relatively lower absorption coefficient while still maintaining a higher state of cross-linking. This research establishes a crucial link between SU-8 processing and its THz response. It can lay the foundation for tailored SU-8 polymer with optimized THz transmission for novel and customized biosensing and microfluidic devices.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008917","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A plethora of polymers are excellent candidates that can be utilized to build various terahertz (THz) based systems for sensing and microfluidics. SU-8 is a versatile epoxy-based polymer with excellent properties, such as biocompatibility and good mechanical properties. Nevertheless, the impact of curing parameters on the THz absorption characteristics of SU-8 remains uncertain. This study explores the impact of various curing conditions on the THz absorption properties of SU-8. The aim is to establish a correlation between THz absorption and the polymer's cross-linking characteristics. Therefore, three key curing parameters have been examined: time, temperature, and ultraviolet (UV) exposure dose. The SU-8 samples that are cured under different conditions are examined using THz Time-Domain Spectroscopy (THz-TDS) to estimate the THz absorption coefficient. Next, the swelling experiment is conducted to evaluate the polymer cross-linking of the cured samples. The results show that curing conditions and, thus, cross-linking routines significantly influence THz wave propagation and attenuation within SU-8 samples. The findings recommended using an optimal curing dose for SU-8 spanning 1240 mJ/cm2 to 1860 mJ/cm2 which results in a relatively lower absorption coefficient while still maintaining a higher state of cross-linking. This research establishes a crucial link between SU-8 processing and its THz response. It can lay the foundation for tailored SU-8 polymer with optimized THz transmission for novel and customized biosensing and microfluidic devices.

Abstract Image

SU-8 固化参数对太赫兹吸收特性的影响
许多聚合物都是极佳的候选材料,可用于构建各种基于太赫兹(THz)的传感和微流体系统。SU-8 是一种多功能环氧基聚合物,具有生物相容性和良好的机械性能等优异特性。然而,固化参数对 SU-8 太赫兹吸收特性的影响仍不确定。本研究探讨了各种固化条件对 SU-8 太赫兹吸收特性的影响。目的是建立太赫兹吸收与聚合物交联特性之间的相关性。因此,本研究考察了三个关键的固化参数:时间、温度和紫外线(UV)照射剂量。使用太赫兹时域光谱(THz-TDS)对在不同条件下固化的 SU-8 样品进行检测,以估算太赫兹吸收系数。接着,进行了膨胀实验,以评估固化样品的聚合物交联情况。结果表明,固化条件以及交联路线会显著影响太赫兹波在 SU-8 样品中的传播和衰减。研究结果建议使用 1240 mJ/cm2 至 1860 mJ/cm2 的最佳固化剂量来固化 SU-8,这样既能获得相对较低的吸收系数,又能保持较高的交联状态。这项研究建立了 SU-8 加工与其太赫兹响应之间的重要联系。它为量身定制具有优化太赫兹传输的 SU-8 聚合物奠定了基础,可用于新型和定制的生物传感和微流控设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信