{"title":"Efficient simulation of complex Ginzburg–Landau equations using high-order exponential-type methods","authors":"Marco Caliari, Fabio Cassini","doi":"10.1016/j.apnum.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the task of efficiently computing the numerical solution of evolutionary complex Ginzburg–Landau equations on Cartesian product domains with homogeneous Dirichlet/Neumann or periodic boundary conditions. To this aim, we employ for the time integration high-order exponential methods of splitting and Lawson type with constant time step size. These schemes enjoy favorable stability properties and, in particular, do not show restrictions on the time step size due to the underlying stiffness of the models. The needed actions of matrix exponentials are efficiently realized by using a tensor-oriented approach that suitably employs the so-called <em>μ</em>-mode product (when the semidiscretization in space is performed with finite differences) or with pointwise operations in Fourier space (when the model is considered with periodic boundary conditions). The overall effectiveness of the approach is demonstrated by running simulations on a variety of two- and three-dimensional (systems of) complex Ginzburg–Landau equations with cubic or cubic-quintic nonlinearities, which are widely considered in literature to model relevant physical phenomena. In fact, we show that high-order exponential-type schemes may outperform standard techniques to integrate in time the models under consideration, i.e., the well-known second-order split-step method and the explicit fourth-order Runge–Kutta integrator, for stringent accuracies.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 340-357"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002058/pdfft?md5=91e2a12e99c9070a604eca3d527b8de9&pid=1-s2.0-S0168927424002058-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the task of efficiently computing the numerical solution of evolutionary complex Ginzburg–Landau equations on Cartesian product domains with homogeneous Dirichlet/Neumann or periodic boundary conditions. To this aim, we employ for the time integration high-order exponential methods of splitting and Lawson type with constant time step size. These schemes enjoy favorable stability properties and, in particular, do not show restrictions on the time step size due to the underlying stiffness of the models. The needed actions of matrix exponentials are efficiently realized by using a tensor-oriented approach that suitably employs the so-called μ-mode product (when the semidiscretization in space is performed with finite differences) or with pointwise operations in Fourier space (when the model is considered with periodic boundary conditions). The overall effectiveness of the approach is demonstrated by running simulations on a variety of two- and three-dimensional (systems of) complex Ginzburg–Landau equations with cubic or cubic-quintic nonlinearities, which are widely considered in literature to model relevant physical phenomena. In fact, we show that high-order exponential-type schemes may outperform standard techniques to integrate in time the models under consideration, i.e., the well-known second-order split-step method and the explicit fourth-order Runge–Kutta integrator, for stringent accuracies.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.