{"title":"Generating 4-dimensional wormholes with Yang–Mills Casimir sources","authors":"A.C.L. Santos , R.V. Maluf , C.R. Muniz","doi":"10.1016/j.aop.2024.169775","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a new static and spherically symmetric traversable wormhole solution in General Relativity, which is supported by the quantum vacuum fluctuations associated with the Casimir effect of the Yang–Mills field confined between perfect chromometallic mirrors in <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> dimensions, recently fitted using first-principle numerical simulations. Initially, we employ a perturbative approach for <span><math><mrow><mi>x</mi><mo>=</mo><mi>m</mi><mi>r</mi><mo>≪</mo><mn>1</mn></mrow></math></span>, where <span><math><mi>m</mi></math></span> represents the Casimir mass and <span><math><mi>r</mi></math></span> is the radial coordinate. This approach has proven to be a reasonable approximation when compared with the exact case in this regime. To find well-behaved redshift functions, we impose constraints on the free parameters. As expected, this solution recovers the electromagnetic-like Casimir solution for <span><math><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Analyzing the traversability conditions, we graphically find that all are satisfied for <span><math><mrow><mn>0</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>17</mn></mrow></math></span>. On the other hand, all the energy conditions are violated, as usual in this context due to the quantum origin of the source. Stability from Tolman–Oppenheimer–Volkov (TOV) equation is guaranteed for all <span><math><mi>r</mi></math></span> and from the speed of sound for <span><math><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>18</mn></mrow></math></span>. Therefore, for <span><math><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>17</mn></mrow></math></span>, we will have a stable solution that satisfies all traversability conditions.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"469 ","pages":"Article 169775"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001829","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a new static and spherically symmetric traversable wormhole solution in General Relativity, which is supported by the quantum vacuum fluctuations associated with the Casimir effect of the Yang–Mills field confined between perfect chromometallic mirrors in dimensions, recently fitted using first-principle numerical simulations. Initially, we employ a perturbative approach for , where represents the Casimir mass and is the radial coordinate. This approach has proven to be a reasonable approximation when compared with the exact case in this regime. To find well-behaved redshift functions, we impose constraints on the free parameters. As expected, this solution recovers the electromagnetic-like Casimir solution for . Analyzing the traversability conditions, we graphically find that all are satisfied for . On the other hand, all the energy conditions are violated, as usual in this context due to the quantum origin of the source. Stability from Tolman–Oppenheimer–Volkov (TOV) equation is guaranteed for all and from the speed of sound for . Therefore, for , we will have a stable solution that satisfies all traversability conditions.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.