{"title":"Exploring redundant trees in bipartite graphs","authors":"Qing Yang, Yingzhi Tian","doi":"10.1016/j.amc.2024.129006","DOIUrl":null,"url":null,"abstract":"<div><p>Luo et al. conjectured that for a tree <em>T</em> with bipartition <em>X</em> and <em>Y</em>, if a <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mi>max</mi><mo></mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span>, then <em>G</em> has a subtree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> isomorphic to <em>T</em> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> is <em>k</em>-connected. Although this conjecture has been validated for spiders and caterpillars in cases where <span><math><mi>k</mi><mo>≤</mo><mn>3</mn></math></span>, and also for paths with odd order, its general applicability has remained an open question. In this paper, we establish the validity of this conjecture for <span><math><mi>k</mi><mo>≤</mo><mn>3</mn></math></span> with the girth under of <em>G</em> at least the diameter of <em>G</em> minus one.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004673","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Luo et al. conjectured that for a tree T with bipartition X and Y, if a k-connected bipartite graph G with minimum degree at least , then G has a subtree isomorphic to T such that is k-connected. Although this conjecture has been validated for spiders and caterpillars in cases where , and also for paths with odd order, its general applicability has remained an open question. In this paper, we establish the validity of this conjecture for with the girth under of G at least the diameter of G minus one.
Luo 等人猜想,对于具有双分区 X 和 Y 的树 T,如果一个 k 连接的双分区图 G 的最小度至少为 k+max{|X||,|Y||},那么 G 有一个与 T 同构的子树 TG,这样 G-V(TG)就是 k 连接的。虽然这一猜想已经在 k≤3 的情况下对蜘蛛和毛毛虫以及奇数阶路径进行了验证,但其普遍适用性仍是一个未决问题。在本文中,我们将证明这一猜想在 k≤3 且 G 的周长至少为 G 的直径减一的情况下的有效性。