Chenjing Liu , Xiangru Chen , Peng Hu , Jie Lin , Junfeng Wang , Xue Geng
{"title":"Contrastive Learning with Transformer Initialization and Clustering Prior for Text Representation","authors":"Chenjing Liu , Xiangru Chen , Peng Hu , Jie Lin , Junfeng Wang , Xue Geng","doi":"10.1016/j.asoc.2024.112162","DOIUrl":null,"url":null,"abstract":"<div><p>Acquiring labeled data for learning sentence embeddings in Natural Language Processing poses challenges due to limited availability and high costs. In order to tackle this issue, we introduce a novel method called <strong>C</strong>ontrastive <strong>L</strong>earning with <strong>T</strong>ransformer Initialization and <strong>C</strong>lustering Prior for Text Representation (CLTC). Our method utilizes Pre-Layernorm Transformers without warm-up, stabilizing the training process while also increasing the final performance. We employ Contrastive Learning (CL) with dropout-based augmentation to enhance sentence embeddings. Additionally, we integrate prior knowledge into the contrastive learning framework within an efficient clustering strategy. When evaluated on the SentEval task, our approach showcases a competitive performance when compared to state-of-the-art approaches in the contrastive learning domain. Our method offers stability, improved embeddings, and the utilization of prior knowledge for enhanced unsupervised representation learning in Natural Language Processing applications.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624009360","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Acquiring labeled data for learning sentence embeddings in Natural Language Processing poses challenges due to limited availability and high costs. In order to tackle this issue, we introduce a novel method called Contrastive Learning with Transformer Initialization and Clustering Prior for Text Representation (CLTC). Our method utilizes Pre-Layernorm Transformers without warm-up, stabilizing the training process while also increasing the final performance. We employ Contrastive Learning (CL) with dropout-based augmentation to enhance sentence embeddings. Additionally, we integrate prior knowledge into the contrastive learning framework within an efficient clustering strategy. When evaluated on the SentEval task, our approach showcases a competitive performance when compared to state-of-the-art approaches in the contrastive learning domain. Our method offers stability, improved embeddings, and the utilization of prior knowledge for enhanced unsupervised representation learning in Natural Language Processing applications.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.