{"title":"Depth and angle evaluations of oblique linear cracks in metal using multi-speed laser lock-in thermography method","authors":"C. Boué, S. Holé","doi":"10.1016/j.infrared.2024.105515","DOIUrl":null,"url":null,"abstract":"<div><p>Cracks can develop obliquely to the metal surface. The multi-speed laser lock-in thermography method is suited for the contactless estimation of open crack angles and depths in metal with oblique linear cracks. A continuous laser source regularly scans the studied sample leading to a periodical heating. The heat diffusion disturbances induced by a crack located in the thermal diffusion area are measured synchronously with the repeated continuous laser scan passes. The thermal signature of the crack is extracted from the amplitude of surface temperature images for various scanning speeds of the thermal source. The asymmetry of the thermal signatures obtained on each side of the crack is analysed as a function of a length relying on the thermal diffusion length. The local crack depth and crack angle are evaluated simultaneously. The method, explained with 3D simulations, is experimentally implemented and tested with calibrated oblique linear cracks. The results demonstrate the potentiality of multi-speed laser lock-in thermography method as a contactless measurement tool for the evaluation of oblique crack shapes up to 3.5 mm depth.</p></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524003992","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Cracks can develop obliquely to the metal surface. The multi-speed laser lock-in thermography method is suited for the contactless estimation of open crack angles and depths in metal with oblique linear cracks. A continuous laser source regularly scans the studied sample leading to a periodical heating. The heat diffusion disturbances induced by a crack located in the thermal diffusion area are measured synchronously with the repeated continuous laser scan passes. The thermal signature of the crack is extracted from the amplitude of surface temperature images for various scanning speeds of the thermal source. The asymmetry of the thermal signatures obtained on each side of the crack is analysed as a function of a length relying on the thermal diffusion length. The local crack depth and crack angle are evaluated simultaneously. The method, explained with 3D simulations, is experimentally implemented and tested with calibrated oblique linear cracks. The results demonstrate the potentiality of multi-speed laser lock-in thermography method as a contactless measurement tool for the evaluation of oblique crack shapes up to 3.5 mm depth.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.