Sharp decay characterization for the compressible Navier-Stokes equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lorenzo Brandolese , Ling-Yun Shou , Jiang Xu , Ping Zhang
{"title":"Sharp decay characterization for the compressible Navier-Stokes equations","authors":"Lorenzo Brandolese ,&nbsp;Ling-Yun Shou ,&nbsp;Jiang Xu ,&nbsp;Ping Zhang","doi":"10.1016/j.aim.2024.109905","DOIUrl":null,"url":null,"abstract":"<div><p>The low-frequency <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework. Precisely, it is proved that the Besov space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>-boundedness condition (with <span><math><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>1</mn></math></span>) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>. To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The low-frequency L1 assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical Lp framework. Precisely, it is proved that the Besov space B˙2,σ1-boundedness condition (with d22dpσ1<d21) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of B˙2,σ1. To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.

可压缩纳维-斯托克斯方程的锐减特征
自川岛(Kawashima)、松村(Matsumura)、西田(Nishida)、庞塞(Ponce)、勋伯克(Schonbek)和维格纳(Wiegner)等人的经典研究以来,低频 L1 假设已被广泛应用于可压缩纳维-斯托克斯方程和不可压缩纳维-斯托克斯方程解的大时间渐近学。在本文中,我们为临界 Lp 框架中的可压缩 Navier-Stokes 方程建立了一个尖锐的衰变特征。确切地说,我们证明了初始扰动低频部分的 Besov 空间 B˙2,∞σ1-有界条件(d2-2dp≤σ1<d2-1)对于实现时间衰减估计的上限不仅是充分的,而且是必要的。此外,我们还证明,当且仅当初始扰动的低频部分属于 B˙2,∞σ1的非琐子集时,时间衰减估计的上界和下界才成立。据我们所知,我们的工作是第一个解决可压缩粘性流体大时间渐近反问题的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信