{"title":"Sharp decay characterization for the compressible Navier-Stokes equations","authors":"Lorenzo Brandolese , Ling-Yun Shou , Jiang Xu , Ping Zhang","doi":"10.1016/j.aim.2024.109905","DOIUrl":null,"url":null,"abstract":"<div><p>The low-frequency <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework. Precisely, it is proved that the Besov space <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>-boundedness condition (with <span><math><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mn>1</mn></math></span>) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of <span><math><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mo>∞</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>. To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The low-frequency assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical framework. Precisely, it is proved that the Besov space -boundedness condition (with ) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of initial perturbation belongs to a nontrivial subset of . To the best of our knowledge, our work is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous fluids.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.