Heat transfer enhancement and pressure drop performance of Al2O3 nanofluid in a laminar flow tube with deep dimples under constant heat flux: An experimental approach
Alireza Khashaei, Mohammad Ameri, Shahram Azizifar
{"title":"Heat transfer enhancement and pressure drop performance of Al2O3 nanofluid in a laminar flow tube with deep dimples under constant heat flux: An experimental approach","authors":"Alireza Khashaei, Mohammad Ameri, Shahram Azizifar","doi":"10.1016/j.ijft.2024.100827","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the heat transfer enhancement and pressure drop of <em>Al</em><sub>2</sub><em>O</em><sub>3</sub> nanofluid in deep dimpled tubes in both longitudinal and circumferential directions. It explores mechanisms that improve the thermal performance of this novel tube geometry. Experiments were conducted using plain and deep dimpled tubes under laminar flow with Reynolds numbers from 500 to 2250, a constant heat flux of 10,000 <em>W</em>/<em>m</em><sup>2</sup>, and nanofluid concentrations from 0.1 wt% to 1 wt%. The findings indicate that local velocity enhancement, vortex generation, and flow rotation and mixing are the three main mechanisms that improve the thermal performance of deep dimpled tubes. The results demonstrate that a deep dimpled tube with 1 wt% nanofluid can increase the convective heat transfer coefficient by up to 3.42 times compared to a smooth tube at <em>Re</em> = 2250. At this Reynolds number, the Nusselt number reaches a maximum of 41.80, and the friction factor ratio increases by only 1.82. Additionally, circumferential analysis reveals how dimple-induced vortices enhance heat transfer. The results also indicate that the tube geometry modification changes the flow regime zones, allowing turbulent flow at lower Reynolds numbers near <em>Re</em> = 2000, as identified by Nusselt number and friction factor plots. The deep dimpled tube has a low improvement penalty, with the highest friction factor of 0.38 at <em>Re</em> = 500 and high thermal enhancement, resulting in a performance evaluation criterion (PEC) of up to 2.80 in the studied region. However, the deep dimpled tube is unsuitable for Reynolds numbers below 1000. For higher velocities, replacing simple tubes with deep dimpled tubes in traditional heat exchangers is highly recommended.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100827"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724002684/pdfft?md5=48c231eab1d303686be9b0942c72f060&pid=1-s2.0-S2666202724002684-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724002684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the heat transfer enhancement and pressure drop of Al2O3 nanofluid in deep dimpled tubes in both longitudinal and circumferential directions. It explores mechanisms that improve the thermal performance of this novel tube geometry. Experiments were conducted using plain and deep dimpled tubes under laminar flow with Reynolds numbers from 500 to 2250, a constant heat flux of 10,000 W/m2, and nanofluid concentrations from 0.1 wt% to 1 wt%. The findings indicate that local velocity enhancement, vortex generation, and flow rotation and mixing are the three main mechanisms that improve the thermal performance of deep dimpled tubes. The results demonstrate that a deep dimpled tube with 1 wt% nanofluid can increase the convective heat transfer coefficient by up to 3.42 times compared to a smooth tube at Re = 2250. At this Reynolds number, the Nusselt number reaches a maximum of 41.80, and the friction factor ratio increases by only 1.82. Additionally, circumferential analysis reveals how dimple-induced vortices enhance heat transfer. The results also indicate that the tube geometry modification changes the flow regime zones, allowing turbulent flow at lower Reynolds numbers near Re = 2000, as identified by Nusselt number and friction factor plots. The deep dimpled tube has a low improvement penalty, with the highest friction factor of 0.38 at Re = 500 and high thermal enhancement, resulting in a performance evaluation criterion (PEC) of up to 2.80 in the studied region. However, the deep dimpled tube is unsuitable for Reynolds numbers below 1000. For higher velocities, replacing simple tubes with deep dimpled tubes in traditional heat exchangers is highly recommended.