Learning the feature distribution similarities for online time series anomaly detection

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Learning the feature distribution similarities for online time series anomaly detection","authors":"","doi":"10.1016/j.neunet.2024.106638","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying anomalies in multi-dimensional sequential data is crucial for ensuring optimal performance across various domains and in large-scale systems. Traditional contrastive methods utilize feature similarity between different features extracted from multidimensional raw inputs as an indicator of anomaly severity. However, the complex objective functions and meticulously designed modules of these methods often lead to efficiency issues and a lack of interpretability. Our study introduces a structural framework called SimDetector, which is a Local–Global Multi-Scale Similarity Contrast network. Specifically, the restructured and enhanced GRU module extracts more generalized local features, including long-term cyclical trends. The multi-scale sparse attention module efficiently extracts multi-scale global features with pattern information. Additionally, we modified the KL divergence to suit the characteristics of time series anomaly detection, proposing a symmetric absolute KL divergence that focuses more on overall distribution differences. The proposed method achieves results that surpass or approach the State-of-the-Art (SOTA) on multiple real-world datasets and synthetic datasets, while also significantly reducing Multiply-Accumulate Operations (MACs) and memory usage.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005628","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying anomalies in multi-dimensional sequential data is crucial for ensuring optimal performance across various domains and in large-scale systems. Traditional contrastive methods utilize feature similarity between different features extracted from multidimensional raw inputs as an indicator of anomaly severity. However, the complex objective functions and meticulously designed modules of these methods often lead to efficiency issues and a lack of interpretability. Our study introduces a structural framework called SimDetector, which is a Local–Global Multi-Scale Similarity Contrast network. Specifically, the restructured and enhanced GRU module extracts more generalized local features, including long-term cyclical trends. The multi-scale sparse attention module efficiently extracts multi-scale global features with pattern information. Additionally, we modified the KL divergence to suit the characteristics of time series anomaly detection, proposing a symmetric absolute KL divergence that focuses more on overall distribution differences. The proposed method achieves results that surpass or approach the State-of-the-Art (SOTA) on multiple real-world datasets and synthetic datasets, while also significantly reducing Multiply-Accumulate Operations (MACs) and memory usage.

为在线时间序列异常检测学习特征分布相似性
识别多维序列数据中的异常情况,对于确保各领域和大规模系统的最佳性能至关重要。传统的对比方法利用从多维原始输入中提取的不同特征之间的特征相似性作为异常严重程度的指标。然而,这些方法复杂的目标函数和精心设计的模块往往会导致效率问题和缺乏可解释性。我们的研究引入了一个名为 SimDetector 的结构框架,它是一个局部-全局多尺度相似性对比网络。具体来说,经过重组和增强的 GRU 模块能提取出更具普遍性的局部特征,包括长期周期性趋势。多尺度稀疏关注模块能有效提取具有模式信息的多尺度全局特征。此外,我们还根据时间序列异常检测的特点修改了 KL 发散,提出了一种对称的绝对 KL 发散,更加关注整体分布差异。所提出的方法在多个真实世界数据集和合成数据集上取得了超越或接近最新技术水平(SOTA)的结果,同时还显著减少了乘积运算(MAC)和内存使用量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信