Chien-Chia Su , Crystal Liu , Vishnu Adi , Kevin C. Chan , Henry C. Tseng
{"title":"Age-related effects of optineurin deficiency in the mouse eye","authors":"Chien-Chia Su , Crystal Liu , Vishnu Adi , Kevin C. Chan , Henry C. Tseng","doi":"10.1016/j.visres.2024.108463","DOIUrl":null,"url":null,"abstract":"<div><p>Optineurin (<em>OPTN</em>) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (<em>Optn<sup>−/</sup></em><sup>−</sup>) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN’s role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2–3 months) or aged (12 months) mice. When retinal layers were quantitated, young <em>Optn<sup>−/</sup></em><sup>−</sup> mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in <em>Optn<sup>−/</sup></em><sup>−</sup> mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by <em>Optn</em> deletion, more dopaminergic amacrine cells were observed in aged <em>Optn<sup>−/</sup></em><sup>−</sup> mice. Taken together, our findings showed that complete loss of <em>Optn</em> resulted in mild retinal changes and less visual function impairment, supporting the possibility that <em>OPTN</em>-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these <em>Optn</em> mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004269892400107X","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Optineurin (OPTN) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (Optn−/−) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN’s role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2–3 months) or aged (12 months) mice. When retinal layers were quantitated, young Optn−/− mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in Optn−/− mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by Optn deletion, more dopaminergic amacrine cells were observed in aged Optn−/− mice. Taken together, our findings showed that complete loss of Optn resulted in mild retinal changes and less visual function impairment, supporting the possibility that OPTN-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these Optn mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.