Enhancing aqueous carbonation via co-milled serpentine and wollastonite: Effects of mechanochemical activation

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Hang Zhai , Qiyuan Chen , Bin Liu , Bu Wang
{"title":"Enhancing aqueous carbonation via co-milled serpentine and wollastonite: Effects of mechanochemical activation","authors":"Hang Zhai ,&nbsp;Qiyuan Chen ,&nbsp;Bin Liu ,&nbsp;Bu Wang","doi":"10.1016/j.clay.2024.107546","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) storage through aqueous mineral carbonation is recognized as a promising technology for geochemical carbon removal. Previous studies predominantly focused on individual alkaline earth silicates, such as wollastonite or serpentine, overlooking their interactive effects on carbonation processes. To address this knowledge gap, we conducted aqueous carbonation tests using individually ball-milled serpentine (m-serpentine), wollastonite (m-wollastonite), mixtures of ball-milled serpentine and wollastonite (m-serpentine + m-wollastonite), and the co-milled serpentine and wollastonite (m-(serpentine + wollastonite)). The carbonation of (m-serpentine + m-wollastonite) involved the formation of a combination of calcite (CaCO<sub>3</sub>) and magnesite (MgCO<sub>3</sub>), suggesting that no significantly interactive effect between the serpentine and wollastonite. In contrast, carbonating m-(serpentine + wollastonite) results in the precipitation of Mg-bearing calcite ((Mg, Ca)CO<sub>3</sub>). Upon quantification, the carbonation degrees of m-(serpentine + wollastonite) is relatively higher than that of (m-serpentine + m-wollastonite). During the carbonation of m-(serpentine + wollastonite), the combination of serpentine and wollastonite facilitates mutual dissolution, leading to the release of more cations. However, these released ions do not diffuse into the bulk carbonating solution; instead, carbonation occurs exclusively at the mineral-water interface. Consequently, the co-milling process, merging Ca-rich wollastonite into Mg-rich serpentine, induces the formation of (Mg, Ca)SiO<sub>3</sub>. These novel insights into aqueous carbonation using a combination of Mg-containing and Ca-containing minerals underscore the significant role of mineral-mineral reactions in CO<sub>2</sub> mineralization.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107546"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724002941","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) storage through aqueous mineral carbonation is recognized as a promising technology for geochemical carbon removal. Previous studies predominantly focused on individual alkaline earth silicates, such as wollastonite or serpentine, overlooking their interactive effects on carbonation processes. To address this knowledge gap, we conducted aqueous carbonation tests using individually ball-milled serpentine (m-serpentine), wollastonite (m-wollastonite), mixtures of ball-milled serpentine and wollastonite (m-serpentine + m-wollastonite), and the co-milled serpentine and wollastonite (m-(serpentine + wollastonite)). The carbonation of (m-serpentine + m-wollastonite) involved the formation of a combination of calcite (CaCO3) and magnesite (MgCO3), suggesting that no significantly interactive effect between the serpentine and wollastonite. In contrast, carbonating m-(serpentine + wollastonite) results in the precipitation of Mg-bearing calcite ((Mg, Ca)CO3). Upon quantification, the carbonation degrees of m-(serpentine + wollastonite) is relatively higher than that of (m-serpentine + m-wollastonite). During the carbonation of m-(serpentine + wollastonite), the combination of serpentine and wollastonite facilitates mutual dissolution, leading to the release of more cations. However, these released ions do not diffuse into the bulk carbonating solution; instead, carbonation occurs exclusively at the mineral-water interface. Consequently, the co-milling process, merging Ca-rich wollastonite into Mg-rich serpentine, induces the formation of (Mg, Ca)SiO3. These novel insights into aqueous carbonation using a combination of Mg-containing and Ca-containing minerals underscore the significant role of mineral-mineral reactions in CO2 mineralization.

Abstract Image

通过共同研磨蛇纹石和硅灰石提高水碳化:机械化学活化的影响
通过水溶液矿物碳化来封存二氧化碳(CO2)被认为是一种很有前景的地球化学除碳技术。以往的研究主要集中在硅灰石或蛇纹石等单个碱土硅酸盐上,忽略了它们对碳化过程的交互影响。为了填补这一知识空白,我们使用单独球磨的蛇纹石(m-蛇纹石)、硅灰石(m-硅灰石)、球磨蛇纹石和硅灰石的混合物(m-蛇纹石 + m-硅灰石)以及共同球磨的蛇纹石和硅灰石(m-(蛇纹石 + 硅灰石))进行了水碳化试验。间蛇纹石 + 间硅灰石)的碳化涉及方解石(CaCO3)和菱镁矿(MgCO3)的形成,表明蛇纹石和硅灰石之间没有明显的相互作用。相反,将 m-(蛇纹石 + 硅灰石)碳化会导致含镁方解石((Mg,Ca)CO3)的沉淀。经定量分析,间(蛇纹石+硅灰石)的碳化程度相对高于(间蛇纹石+间硅灰石)。在 m-(蛇纹石 + 硅灰石)的碳化过程中,蛇纹石和硅灰石的结合促进了相互溶解,从而释放出更多的阳离子。然而,这些释放出的离子并没有扩散到大量碳化溶液中;相反,碳化完全发生在矿物与水的界面上。因此,在共磨过程中,富含钙的硅灰石与富含镁的蛇纹石融合,形成了(镁、钙)SiO3。这些利用含镁和含钙矿物组合进行水碳化的新见解强调了矿物-矿物反应在二氧化碳矿化过程中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信