{"title":"Off-diagonally symmetric domino tilings of the Aztec diamond of odd order","authors":"Yi-Lin Lee","doi":"10.1016/j.aam.2024.102759","DOIUrl":null,"url":null,"abstract":"<div><p>We study the enumeration of off-diagonally symmetric domino tilings of odd-order Aztec diamonds in two directions: (1) with one boundary defect, and (2) with maximally-many zeroes on the diagonal. In the first direction, we prove a symmetry property which states that the numbers of off-diagonally symmetric domino tilings of the Aztec diamond of order <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> are equal when the boundary defect is at the <em>k</em>th position and the <span><math><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo></math></span>th position on the boundary, respectively. This symmetry property proves a special case of a recent conjecture by Behrend, Fischer, and Koutschan.</p><p>In the second direction, a Pfaffian formula is obtained for the number of “nearly” off-diagonally symmetric domino tilings of odd-order Aztec diamonds, where the entries of the Pfaffian satisfy a simple recurrence relation. The numbers of domino tilings mentioned in the above two directions do not seem to have a simple product formula, but we show that these numbers satisfy simple matrix equations in which the entries of the matrix are given by Delannoy numbers. The proof of these results involves the method of non-intersecting lattice paths and a modification of Stembridge's Pfaffian formula for families of non-intersecting lattice paths. Finally, we propose conjectures concerning the log-concavity and asymptotic behavior of the number of off-diagonally symmetric domino tilings of odd-order Aztec diamonds.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the enumeration of off-diagonally symmetric domino tilings of odd-order Aztec diamonds in two directions: (1) with one boundary defect, and (2) with maximally-many zeroes on the diagonal. In the first direction, we prove a symmetry property which states that the numbers of off-diagonally symmetric domino tilings of the Aztec diamond of order are equal when the boundary defect is at the kth position and the th position on the boundary, respectively. This symmetry property proves a special case of a recent conjecture by Behrend, Fischer, and Koutschan.
In the second direction, a Pfaffian formula is obtained for the number of “nearly” off-diagonally symmetric domino tilings of odd-order Aztec diamonds, where the entries of the Pfaffian satisfy a simple recurrence relation. The numbers of domino tilings mentioned in the above two directions do not seem to have a simple product formula, but we show that these numbers satisfy simple matrix equations in which the entries of the matrix are given by Delannoy numbers. The proof of these results involves the method of non-intersecting lattice paths and a modification of Stembridge's Pfaffian formula for families of non-intersecting lattice paths. Finally, we propose conjectures concerning the log-concavity and asymptotic behavior of the number of off-diagonally symmetric domino tilings of odd-order Aztec diamonds.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.