S.K. Saranya , Marykutty Thomas , T.V. Aravindakshan , R. Thirupathy Venkatachalapathy , Jinty Sukumaran , Raji Kanakkaparambil
{"title":"Discovery and computational exploration of SNPs in GNRHR gene and their influence on protein structure and function in Indian goat breeds","authors":"S.K. Saranya , Marykutty Thomas , T.V. Aravindakshan , R. Thirupathy Venkatachalapathy , Jinty Sukumaran , Raji Kanakkaparambil","doi":"10.1016/j.genrep.2024.102014","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on identifying functional single nucleotide polymorphisms (SNPs) within the <em>gonadotropin-releasing hormone receptor (GNRHR) gene</em> and conducting subsequent <em>in-silico</em> analysis of their effects on protein structure and function in two distinct South Indian goat breeds, namely Attapady Black (<em>n</em> = 120) and Malabari goats (<em>n</em> = 180), known for their divergent prolificacy traits. Utilizing a DNA pool sequencing assay, ten SNPs were uncovered in the study population: c.-1129T>G, c.-1069A>G, c.-978A>C, c.-605A>G, c.-33A>G, c.-29T>G, c.48G>A, c.75G>A, c.209T>G, and c.*212A>G. Notably, two polymorphisms, c.-1129T>G and c.-33A>G, were novel. Additionally, two polymorphisms, c.-33A>G and c.-978A>C, were exclusive to Malabari goats. Analysis of upstream variants revealed modifications to transcription factor and micro-RNA (miRNA) binding sites, suggesting potential alterations in <em>GNRHR</em> expression. Of particular significance was the non-synonymous exonic variant at c.209T>G locus, resulting in methionine to arginine substitution at the 70<sup>th</sup> position within the first intracellular loop of the receptor protein. This amino acid change may have implications for the functional dynamics of the receptor as GnRHR intracellular loops are involved in G protein coupling thereby facilitation of downstream signalling pathways. The identified SNPs and their <em>in-silico</em> impact analysis contribute to our understanding of the molecular mechanisms underlying reproductive traits in these goat populations, with implications for future breeding strategies and genomic selection programs.</p></div>","PeriodicalId":12673,"journal":{"name":"Gene Reports","volume":"37 ","pages":"Article 102014"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452014424001377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on identifying functional single nucleotide polymorphisms (SNPs) within the gonadotropin-releasing hormone receptor (GNRHR) gene and conducting subsequent in-silico analysis of their effects on protein structure and function in two distinct South Indian goat breeds, namely Attapady Black (n = 120) and Malabari goats (n = 180), known for their divergent prolificacy traits. Utilizing a DNA pool sequencing assay, ten SNPs were uncovered in the study population: c.-1129T>G, c.-1069A>G, c.-978A>C, c.-605A>G, c.-33A>G, c.-29T>G, c.48G>A, c.75G>A, c.209T>G, and c.*212A>G. Notably, two polymorphisms, c.-1129T>G and c.-33A>G, were novel. Additionally, two polymorphisms, c.-33A>G and c.-978A>C, were exclusive to Malabari goats. Analysis of upstream variants revealed modifications to transcription factor and micro-RNA (miRNA) binding sites, suggesting potential alterations in GNRHR expression. Of particular significance was the non-synonymous exonic variant at c.209T>G locus, resulting in methionine to arginine substitution at the 70th position within the first intracellular loop of the receptor protein. This amino acid change may have implications for the functional dynamics of the receptor as GnRHR intracellular loops are involved in G protein coupling thereby facilitation of downstream signalling pathways. The identified SNPs and their in-silico impact analysis contribute to our understanding of the molecular mechanisms underlying reproductive traits in these goat populations, with implications for future breeding strategies and genomic selection programs.
Gene ReportsBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
7.70%
发文量
246
审稿时长
49 days
期刊介绍:
Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Gene Reports strives to be a very diverse journal and topics in all fields will be considered for publication. Although not limited to the following, some general topics include: DNA Organization, Replication & Evolution -Focus on genomic DNA (chromosomal organization, comparative genomics, DNA replication, DNA repair, mobile DNA, mitochondrial DNA, chloroplast DNA). Expression & Function - Focus on functional RNAs (microRNAs, tRNAs, rRNAs, mRNA splicing, alternative polyadenylation) Regulation - Focus on processes that mediate gene-read out (epigenetics, chromatin, histone code, transcription, translation, protein degradation). Cell Signaling - Focus on mechanisms that control information flow into the nucleus to control gene expression (kinase and phosphatase pathways controlled by extra-cellular ligands, Wnt, Notch, TGFbeta/BMPs, FGFs, IGFs etc.) Profiling of gene expression and genetic variation - Focus on high throughput approaches (e.g., DeepSeq, ChIP-Seq, Affymetrix microarrays, proteomics) that define gene regulatory circuitry, molecular pathways and protein/protein networks. Genetics - Focus on development in model organisms (e.g., mouse, frog, fruit fly, worm), human genetic variation, population genetics, as well as agricultural and veterinary genetics. Molecular Pathology & Regenerative Medicine - Focus on the deregulation of molecular processes in human diseases and mechanisms supporting regeneration of tissues through pluripotent or multipotent stem cells.