An efficient and accurate mapping method for elliptic equations in irregular annular domains

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Guoqing Yao, Zicheng Wang, Zhongqing Wang
{"title":"An efficient and accurate mapping method for elliptic equations in irregular annular domains","authors":"Guoqing Yao,&nbsp;Zicheng Wang,&nbsp;Zhongqing Wang","doi":"10.1016/j.cam.2024.116237","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a coordinate transformation, which transforms the irregular annular domain to a unit disk. We present its basic properties. As examples, we consider Poisson type equation and Cauchy–Navier elastic equations with variable coefficients in two-dimensional irregular annular domains, and prove the existence and uniqueness of weak solutions. We also construct the mixed Fourier–Legendre spectral schemes, and derive the optimal convergence of numerical solutions under the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. The numerical results indicate that the suggested method achieves high-order accuracy.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a coordinate transformation, which transforms the irregular annular domain to a unit disk. We present its basic properties. As examples, we consider Poisson type equation and Cauchy–Navier elastic equations with variable coefficients in two-dimensional irregular annular domains, and prove the existence and uniqueness of weak solutions. We also construct the mixed Fourier–Legendre spectral schemes, and derive the optimal convergence of numerical solutions under the H1-norm. The numerical results indicate that the suggested method achieves high-order accuracy.

不规则环形域中椭圆方程的高效精确映射法
本文介绍了一种坐标变换,它将不规则环形域变换为单位圆盘。我们介绍了它的基本特性。作为例子,我们考虑了二维不规则环形域中的泊松型方程和具有可变系数的 Cauchy-Navier 弹性方程,并证明了弱解的存在性和唯一性。我们还构建了混合傅立叶-列根德谱方案,并推导出数值解在 H1 准则下的最佳收敛性。数值结果表明,所建议的方法达到了高阶精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信