Multi–level method of fundamental solutions for solving polyharmonic problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andreas Karageorghis , C.S. Chen
{"title":"Multi–level method of fundamental solutions for solving polyharmonic problems","authors":"Andreas Karageorghis ,&nbsp;C.S. Chen","doi":"10.1016/j.cam.2024.116220","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a multi–level method of fundamental solutions for solving polyharmonic problems governed by <span><math><mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>N</mi><mo>∈</mo><mi>N</mi><mo>∖</mo><mrow><mo>{</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> in both two and three dimensions. Instead of approximating the solution with linear combinations of <span><math><mi>N</mi></math></span> fundamental solutions, we show that, with appropriate deployments of the source points, it is possible to employ an approximation involving only the fundamental solution of the operator <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. To determine the optimal position of the source points, we apply the recently developed effective condition number method. In addition, we show that when the proposed technique is applied to boundary value problems in circular or axisymmetric domains, with appropriate distributions of boundary and source points, it lends itself to the application of matrix decomposition algorithms. The results of several numerical tests are presented and analysed.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a multi–level method of fundamental solutions for solving polyharmonic problems governed by ΔNu=0,NN{1} in both two and three dimensions. Instead of approximating the solution with linear combinations of N fundamental solutions, we show that, with appropriate deployments of the source points, it is possible to employ an approximation involving only the fundamental solution of the operator ΔN. To determine the optimal position of the source points, we apply the recently developed effective condition number method. In addition, we show that when the proposed technique is applied to boundary value problems in circular or axisymmetric domains, with appropriate distributions of boundary and source points, it lends itself to the application of matrix decomposition algorithms. The results of several numerical tests are presented and analysed.

求解多谐问题的多层次基本解法
我们考虑了一种多层次基本解法,用于解决二维和三维中受 ΔNu=0,N∈N∖{1} 控制的多谐问题。我们不再用 N 个基本解的线性组合来近似求解,而是表明,在适当部署源点的情况下,可以采用只涉及算子 ΔN 基本解的近似方法。为了确定源点的最佳位置,我们采用了最近开发的有效条件数法。此外,我们还表明,当将所提出的技术应用于圆形或轴对称域中的边界值问题时,如果边界点和源点分布适当,则可以应用矩阵分解算法。我们介绍并分析了几个数值测试的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信