Programmable Photonic Quantum Circuits with Ultrafast Time-Bin Encoding

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Frédéric Bouchard, Kate Fenwick, Kent Bonsma-Fisher, Duncan England, Philip J. Bustard, Khabat Heshami, Benjamin Sussman
{"title":"Programmable Photonic Quantum Circuits with Ultrafast Time-Bin Encoding","authors":"Frédéric Bouchard, Kate Fenwick, Kent Bonsma-Fisher, Duncan England, Philip J. Bustard, Khabat Heshami, Benjamin Sussman","doi":"10.1103/physrevlett.133.090601","DOIUrl":null,"url":null,"abstract":"We propose a quantum information processing platform that utilizes the ultrafast time-bin encoding of photons. This approach offers a pathway to scalability by leveraging the inherent phase stability of collinear temporal interferometric networks at the femtosecond-to-picosecond timescale. The proposed architecture encodes information in ultrafast temporal bins processed using optically induced nonlinearities and birefringent materials while keeping photons in a single spatial mode. We demonstrate the potential for scalable photonic quantum information processing through two independent experiments that showcase the platform’s programmability and scalability, respectively. The scheme’s programmability is demonstrated in the first experiment, where we successfully program 362 different unitary transformations in up to eight dimensions in a temporal circuit. In the second experiment, we show the scalability of ultrafast time-bin encoding by building a passive optical network, with increasing circuit depth, of up to 36 optical modes. In each experiment, fidelities exceed 97%, while the interferometric phase remains passively stable for several days.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"2 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.090601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a quantum information processing platform that utilizes the ultrafast time-bin encoding of photons. This approach offers a pathway to scalability by leveraging the inherent phase stability of collinear temporal interferometric networks at the femtosecond-to-picosecond timescale. The proposed architecture encodes information in ultrafast temporal bins processed using optically induced nonlinearities and birefringent materials while keeping photons in a single spatial mode. We demonstrate the potential for scalable photonic quantum information processing through two independent experiments that showcase the platform’s programmability and scalability, respectively. The scheme’s programmability is demonstrated in the first experiment, where we successfully program 362 different unitary transformations in up to eight dimensions in a temporal circuit. In the second experiment, we show the scalability of ultrafast time-bin encoding by building a passive optical network, with increasing circuit depth, of up to 36 optical modes. In each experiment, fidelities exceed 97%, while the interferometric phase remains passively stable for several days.

Abstract Image

具有超快时空编码功能的可编程光子量子电路
我们提出了一种量子信息处理平台,利用光子的超快时间带编码。这种方法通过利用飞秒到皮秒时间尺度上的共线时间干涉网络固有的相位稳定性,提供了一种可扩展性途径。所提出的架构利用光诱导非线性和双折射材料,在超快时间分段中对信息进行编码处理,同时将光子保持在单一空间模式中。我们通过两个独立实验展示了可扩展光子量子信息处理的潜力,这两个实验分别展示了该平台的可编程性和可扩展性。第一个实验展示了该方案的可编程性,我们成功地在一个时序电路中以多达八个维度对 362 种不同的单元变换进行了编程。在第二个实验中,我们建立了一个无源光学网络,随着电路深度的增加,最多可容纳 36 个光学模式,从而展示了超快时间带编码的可扩展性。在每个实验中,保真度都超过了 97%,同时干涉相位在数天内保持被动稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信