Simulation-guided atomic Ni catalyst with oxygen-enriched coordination environment for H2O2 electrosynthesis coupled with 5-HMF oxidation

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Jun Wang, Xiaomei Liu, Chengbo Ma, Huanyu Fu, Shuo Chen, Ning Li, Yang Li, Xiaobin Fan, Wenchao Peng
{"title":"Simulation-guided atomic Ni catalyst with oxygen-enriched coordination environment for H2O2 electrosynthesis coupled with 5-HMF oxidation","authors":"Jun Wang, Xiaomei Liu, Chengbo Ma, Huanyu Fu, Shuo Chen, Ning Li, Yang Li, Xiaobin Fan, Wenchao Peng","doi":"10.1016/j.checat.2024.101090","DOIUrl":null,"url":null,"abstract":"<p>The electrosynthesis of H<sub>2</sub>O<sub>2</sub> production via the two-electron oxygen reduction reaction (2e-ORR) has attracted increasing attention. In this work, a novel Ni-N-C single-atom catalyst (SAC) with Ni-N<sub>4</sub>O<sub>1</sub> coordination and a C-O-C synergistic structure is screened out. The corresponding SAC is then synthesized via chelation annealing. During the 2e-ORR test, the Ni-NOC exhibits an H<sub>2</sub>O<sub>2</sub> selectivity of 92.7% at 0.5 V vs. reversible hydrogen electrode (RHE), and the H<sub>2</sub>O<sub>2</sub> production rate can reach 252.91 mmol h<sup>−1</sup> g<sup>−1</sup> with a TOF of 0.187 s<sup>−1</sup>, which is among the best Ni-N-C catalysts. In addition, the cathodic 2e-ORR on this SAC is successfully coupled with the anodic oxidation of 5-HMF, and an overpotential of 0.32 V is achieved for 5-HMF oxidation at 50 mA, much smaller than the traditional oxygen evolution reaction (OER) process. Hence, this work provides a promising strategy for designing highly active 2e–ORR SACs as well as a novel coupling system of H<sub>2</sub>O<sub>2</sub> production and 5-HMF electrooxidation.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"98 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrosynthesis of H2O2 production via the two-electron oxygen reduction reaction (2e-ORR) has attracted increasing attention. In this work, a novel Ni-N-C single-atom catalyst (SAC) with Ni-N4O1 coordination and a C-O-C synergistic structure is screened out. The corresponding SAC is then synthesized via chelation annealing. During the 2e-ORR test, the Ni-NOC exhibits an H2O2 selectivity of 92.7% at 0.5 V vs. reversible hydrogen electrode (RHE), and the H2O2 production rate can reach 252.91 mmol h−1 g−1 with a TOF of 0.187 s−1, which is among the best Ni-N-C catalysts. In addition, the cathodic 2e-ORR on this SAC is successfully coupled with the anodic oxidation of 5-HMF, and an overpotential of 0.32 V is achieved for 5-HMF oxidation at 50 mA, much smaller than the traditional oxygen evolution reaction (OER) process. Hence, this work provides a promising strategy for designing highly active 2e–ORR SACs as well as a novel coupling system of H2O2 production and 5-HMF electrooxidation.

Abstract Image

具有富氧配位环境的仿真引导原子镍催化剂用于 H2O2 电合成及 5-HMF 氧化
通过双电子氧还原反应(2e-ORR)电合成产生 H2O2 的研究越来越受到关注。在这项工作中,筛选出了一种具有 Ni-N4O1 配位和 C-O-C 协同结构的新型 Ni-N-C 单原子催化剂(SAC)。然后通过螯合退火合成了相应的 SAC。在 2e-ORR 试验中,Ni-NOC 在 0.5 V 相对于可逆氢电极(RHE)的电压下表现出 92.7% 的 H2O2 选择性,H2O2 产率可达 252.91 mmol h-1 g-1,TOF 为 0.187 s-1,是最好的 Ni-N-C 催化剂之一。此外,该 SAC 上的阴极 2e-ORR 与 5-HMF 的阳极氧化成功耦合,在 50 mA 下 5-HMF 氧化的过电位为 0.32 V,远小于传统的氧进化反应(OER)过程。因此,这项工作为设计高活性 2e-ORR SAC 以及 H2O2 生成和 5-HMF 电氧化的新型耦合系统提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信