Physically hybrid Zr(OH)4 + CuO catalyzed selective aniline oxidation: A new Ph- N ˙ OH mediated mechanism

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-08-27 DOI:10.1002/aic.18592
Jiaheng Qin, Chong Liu, Feng Zhao, Tongtong Fan, Zheng-Lan Ma, Jiantai Ma, Yu Long
{"title":"Physically hybrid Zr(OH)4 + CuO catalyzed selective aniline oxidation: A new Ph-\n \n \n N\n ˙\n \n OH mediated mechanism","authors":"Jiaheng Qin,&nbsp;Chong Liu,&nbsp;Feng Zhao,&nbsp;Tongtong Fan,&nbsp;Zheng-Lan Ma,&nbsp;Jiantai Ma,&nbsp;Yu Long","doi":"10.1002/aic.18592","DOIUrl":null,"url":null,"abstract":"<p>Developing the sustainable and cost-effective heterogeneous catalytic system for controlling chemoselectivity holds substantial importance in fine organic chemicals. Herein we construct a unique Zr(OH)<sub>4</sub> + CuO physically hybrid system for selective oxidation of anilines. Zr(OH)<sub>4</sub> alone leads to azoxybenzene formation, and Zr(OH)<sub>4</sub> + CuO shifts the reaction favorably toward nitrosobenzene. The proximity study indicates Zr(OH)<sub>4</sub> + CuO outperforms its counterparts synthesized through methods like ball-milling, loading, and coprecipitation, because the closer proximity exhibits stronger chemical interaction, restricting the activity of Zr-OH hydroxyl sites. Through mechanistic experiments, in situ DRIFT-IR and DFT calculations, a new Ph-<span></span><math>\n <mrow>\n <mover>\n <mi>N</mi>\n <mo>˙</mo>\n </mover>\n </mrow></math>OH intermediate mechanism is firstly proposed. Two Ph-<span></span><math>\n <mrow>\n <mover>\n <mi>N</mi>\n <mo>˙</mo>\n </mover>\n </mrow></math>OH self-condensate to form azoxybenzene for only Zr(OH)<sub>4</sub>, whereas Zr(OH)<sub>4</sub> + CuO could promote rapid transformation of Ph-<span></span><math>\n <mrow>\n <mover>\n <mi>N</mi>\n <mo>˙</mo>\n </mover>\n </mrow></math>OH to nitrosobenzene on CuO through a hydrogen transfer process. Moreover, Zr(OH)<sub>4</sub> + CuO displays good recyclability and robust scalability. This is the first report demonstrating the utilization of a physically hybrid catalyst to adjust the selectivity of the aniline oxidation reaction.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18592","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing the sustainable and cost-effective heterogeneous catalytic system for controlling chemoselectivity holds substantial importance in fine organic chemicals. Herein we construct a unique Zr(OH)4 + CuO physically hybrid system for selective oxidation of anilines. Zr(OH)4 alone leads to azoxybenzene formation, and Zr(OH)4 + CuO shifts the reaction favorably toward nitrosobenzene. The proximity study indicates Zr(OH)4 + CuO outperforms its counterparts synthesized through methods like ball-milling, loading, and coprecipitation, because the closer proximity exhibits stronger chemical interaction, restricting the activity of Zr-OH hydroxyl sites. Through mechanistic experiments, in situ DRIFT-IR and DFT calculations, a new Ph- N ˙ OH intermediate mechanism is firstly proposed. Two Ph- N ˙ OH self-condensate to form azoxybenzene for only Zr(OH)4, whereas Zr(OH)4 + CuO could promote rapid transformation of Ph- N ˙ OH to nitrosobenzene on CuO through a hydrogen transfer process. Moreover, Zr(OH)4 + CuO displays good recyclability and robust scalability. This is the first report demonstrating the utilization of a physically hybrid catalyst to adjust the selectivity of the aniline oxidation reaction.

物理杂化 Zr(OH)4 + CuO 催化的选择性苯胺氧化:一种新的 Ph-N˙OH 介导机制
开发可持续且具有成本效益的异相催化体系来控制化学选择性在精细有机化学领域具有重要意义。在此,我们构建了一种独特的 Zr(OH)4 + CuO 物理杂化体系,用于苯胺的选择性氧化。单独使用 Zr(OH)4 会导致偶氮苯的形成,而 Zr(OH)4 + CuO 则会使反应向亚硝基苯方向有利地转移。邻近性研究表明,Zr(OH)4 + CuO 的性能优于通过球磨、装填和共沉淀等方法合成的同类产品,这是因为更近的邻近性表现出更强的化学作用,限制了 Zr-OH 羟基位点的活性。通过机理实验、原位 DRIFT-IR 和 DFT 计算,首次提出了一种新的 Ph-N˙$$ \dot{\mathrm{N}}$OH 中间机制。$$OH 中间机制首次被提出。两个 Ph-N˙$$ \dot{\mathrm{N}}而 Zr(OH)4 + CuO 可以促进 Ph-N˙$$ \dot{mathrm{N}} 的快速转化。$$OH 在 CuO 上通过氢转移过程快速转化为亚硝基苯。此外,Zr(OH)4 + CuO 还具有良好的可回收性和强大的可扩展性。这是首次报道利用物理杂化催化剂来调节苯胺氧化反应的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信