Mohamed Khachman, Catherine Morency, Francesco Ciari
{"title":"A novel machine learning-based spatialized population synthesis framework","authors":"Mohamed Khachman, Catherine Morency, Francesco Ciari","doi":"10.1007/s11116-024-10534-0","DOIUrl":null,"url":null,"abstract":"<p>Synthetic populations are increasingly required in transportation demand modelling practice to feed the large-scale agent-based microsimulation platforms gaining in popularity. The quality of the synthetic population, i.e., its representativeness of the sociodemographic and the spatial distribution of the real population, is a determinant factor of the reliability of the microsimulation it feeds. While many research works focused on improving the sociodemographic accuracy of synthetic populations, the quality of their spatial distribution remained less covered. This paper suggests a new explicitly spatialized population synthesis framework. It leverages the performant Clustering Large Applications (CLARA) and Random Forest algorithms as well as rich spatial information collected as part of surveys to make accurate predictions of synthetic households’ locations at the building scale directly. In addition to preserving optimal sociodemographic accuracy and achieving realistic explicit spatialization, the new framework shows acceptable transferability thanks to CLARA’s efficiency. An explicitly spatialized synthetic population for Montreal Island is generated using the proposed clustering + classification framework. The four components of the proposed framework have generated satisfactory results with the zonal synthetic population established showing a 2.85% average relative error, the building clustering selected having a 0.48 average silhouette width, the classification model achieving a 0.79 macro-average F1 score, and 78.9% of the synthetic households being assigned to their preferred building cluster.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"13 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-024-10534-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic populations are increasingly required in transportation demand modelling practice to feed the large-scale agent-based microsimulation platforms gaining in popularity. The quality of the synthetic population, i.e., its representativeness of the sociodemographic and the spatial distribution of the real population, is a determinant factor of the reliability of the microsimulation it feeds. While many research works focused on improving the sociodemographic accuracy of synthetic populations, the quality of their spatial distribution remained less covered. This paper suggests a new explicitly spatialized population synthesis framework. It leverages the performant Clustering Large Applications (CLARA) and Random Forest algorithms as well as rich spatial information collected as part of surveys to make accurate predictions of synthetic households’ locations at the building scale directly. In addition to preserving optimal sociodemographic accuracy and achieving realistic explicit spatialization, the new framework shows acceptable transferability thanks to CLARA’s efficiency. An explicitly spatialized synthetic population for Montreal Island is generated using the proposed clustering + classification framework. The four components of the proposed framework have generated satisfactory results with the zonal synthetic population established showing a 2.85% average relative error, the building clustering selected having a 0.48 average silhouette width, the classification model achieving a 0.79 macro-average F1 score, and 78.9% of the synthetic households being assigned to their preferred building cluster.
期刊介绍:
In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world.
These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.