Wenzhen Fu, Yue Fu, Yunlong Zhao, Huanan Wang, Peng Liu, Yang Yang
{"title":"A metalloenzyme platform for catalytic asymmetric radical dearomatization","authors":"Wenzhen Fu, Yue Fu, Yunlong Zhao, Huanan Wang, Peng Liu, Yang Yang","doi":"10.1038/s41557-024-01608-8","DOIUrl":null,"url":null,"abstract":"<p>Catalytic asymmetric dearomatization represents a powerful means to convert flat aromatic compounds into stereochemically well-defined three-dimensional molecular scaffolds. Using new-to-nature metalloredox biocatalysis, we describe an enzymatic strategy for catalytic asymmetric dearomatization via a challenging radical mechanism that has eluded small-molecule catalysts. Enabled by directed evolution, new-to-nature radical dearomatases P450<sub>rad1</sub>–P450<sub>rad</sub><sub>5</sub> facilitated asymmetric dearomatization of a broad spectrum of aromatic substrates, including indoles, pyrroles and phenols, allowing both enantioconvergent and enantiodivergent radical dearomatization reactions to be accomplished with excellent enzymatic control. Computational studies revealed the importance of additional hydrogen bonding interactions between the engineered metalloenzyme and the reactive intermediate in enhancing enzymatic activity and enantiocontrol. Furthermore, designer non-ionic surfactants were found to significantly accelerate this biotransformation, providing an alternative means to promote otherwise sluggish new-to-nature biotransformations. Together, this evolvable metalloenzyme platform opens up new avenues to advance challenging catalytic asymmetric dearomatization processes involving free radical intermediates.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01608-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic asymmetric dearomatization represents a powerful means to convert flat aromatic compounds into stereochemically well-defined three-dimensional molecular scaffolds. Using new-to-nature metalloredox biocatalysis, we describe an enzymatic strategy for catalytic asymmetric dearomatization via a challenging radical mechanism that has eluded small-molecule catalysts. Enabled by directed evolution, new-to-nature radical dearomatases P450rad1–P450rad5 facilitated asymmetric dearomatization of a broad spectrum of aromatic substrates, including indoles, pyrroles and phenols, allowing both enantioconvergent and enantiodivergent radical dearomatization reactions to be accomplished with excellent enzymatic control. Computational studies revealed the importance of additional hydrogen bonding interactions between the engineered metalloenzyme and the reactive intermediate in enhancing enzymatic activity and enantiocontrol. Furthermore, designer non-ionic surfactants were found to significantly accelerate this biotransformation, providing an alternative means to promote otherwise sluggish new-to-nature biotransformations. Together, this evolvable metalloenzyme platform opens up new avenues to advance challenging catalytic asymmetric dearomatization processes involving free radical intermediates.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.