Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaqing Shen, Kaichen Zhu, Yiping Xiao, Dominic Waldhör, Abdulrahman H. Basher, Theresia Knobloch, Sebastian Pazos, Xianhu Liang, Wenwen Zheng, Yue Yuan, Juan B. Roldan, Udo Schwingenschlögl, He Tian, Huaqiang Wu, Thomas F. Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das, Tibor Grasser, Mario Lanza
{"title":"Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy","authors":"Yaqing Shen, Kaichen Zhu, Yiping Xiao, Dominic Waldhör, Abdulrahman H. Basher, Theresia Knobloch, Sebastian Pazos, Xianhu Liang, Wenwen Zheng, Yue Yuan, Juan B. Roldan, Udo Schwingenschlögl, He Tian, Huaqiang Wu, Thomas F. Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das, Tibor Grasser, Mario Lanza","doi":"10.1038/s41928-024-01233-w","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) semiconductors could potentially be used as channel materials in commercial field-effect transistors. However, the interface between 2D semiconductors and most gate dielectrics contains traps that degrade performance. Layered hexagonal boron nitride (h-BN) can form a defect-free interface with 2D semiconductors, but when prepared by industry-compatible methods—such as chemical vapour deposition (CVD)—the presence of native defects increases leakage current and reduces dielectric strength. Here we show that metal gate electrodes with a high cohesive energy—platinum and tungsten—can allow CVD-grown layered h-BN to be used as a gate dielectric in transistors. The electrodes can reduce the current across CVD-grown h-BN by a factor of around 500 compared to similar devices with gold electrodes and can provide a high dielectric strength of at least 25 MV cm−1. We examine the behaviour statistically across 867 devices, which includes a microchip based on complementary metal–oxide–semiconductor technology. Metal gate electrodes with a high cohesive energy—platinum and tungsten—can be used to mitigate leakage currents and premature dielectric breakdown across chemical vapour deposition-grown multilayer hexagonal boron nitride, allowing the material to be used as a gate dielectric in two-dimensional-materials-based transistors.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"856-867"},"PeriodicalIF":33.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01233-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) semiconductors could potentially be used as channel materials in commercial field-effect transistors. However, the interface between 2D semiconductors and most gate dielectrics contains traps that degrade performance. Layered hexagonal boron nitride (h-BN) can form a defect-free interface with 2D semiconductors, but when prepared by industry-compatible methods—such as chemical vapour deposition (CVD)—the presence of native defects increases leakage current and reduces dielectric strength. Here we show that metal gate electrodes with a high cohesive energy—platinum and tungsten—can allow CVD-grown layered h-BN to be used as a gate dielectric in transistors. The electrodes can reduce the current across CVD-grown h-BN by a factor of around 500 compared to similar devices with gold electrodes and can provide a high dielectric strength of at least 25 MV cm−1. We examine the behaviour statistically across 867 devices, which includes a microchip based on complementary metal–oxide–semiconductor technology. Metal gate electrodes with a high cohesive energy—platinum and tungsten—can be used to mitigate leakage currents and premature dielectric breakdown across chemical vapour deposition-grown multilayer hexagonal boron nitride, allowing the material to be used as a gate dielectric in two-dimensional-materials-based transistors.

Abstract Image

Abstract Image

使用六方氮化硼电介质和高内聚能金属栅极的二维材料晶体管
二维(2D)半导体有可能用作商用场效应晶体管的沟道材料。然而,二维半导体与大多数栅极电介质之间的界面含有降低性能的陷阱。层状六方氮化硼(h-BN)可与二维半导体形成无缺陷的界面,但当采用与工业兼容的方法(如化学气相沉积法)制备时,原生缺陷的存在会增加漏电流并降低介电强度。在这里,我们展示了具有高内聚能的金属栅极电极--铂和钨--可以使 CVD 生长的层状 h-BN 用作晶体管的栅极电介质。与使用金电极的类似器件相比,这些电极能将通过 CVD 生长的 h-BN 的电流降低约 500 倍,并能提供至少 25 MV cm-1 的高介电强度。我们对 867 个器件的行为进行了统计检测,其中包括基于互补金属氧化物半导体技术的微芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信