Wafer-scale nanofabrication of sub-5 nm gaps in plasmonic metasurfaces

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jeetendra Gour, Sebastian Beer, Pallabi Paul, Alessandro Alberucci, Michael Steinert, Adriana Szeghalmi, Thomas Siefke, Ulf Peschel, Stefan Nolte, Uwe Detlef Zeitner
{"title":"Wafer-scale nanofabrication of sub-5 nm gaps in plasmonic metasurfaces","authors":"Jeetendra Gour, Sebastian Beer, Pallabi Paul, Alessandro Alberucci, Michael Steinert, Adriana Szeghalmi, Thomas Siefke, Ulf Peschel, Stefan Nolte, Uwe Detlef Zeitner","doi":"10.1515/nanoph-2024-0343","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving field of plasmonic metasurfaces, achieving homogeneous, reliable, and reproducible fabrication of sub-5 nm dielectric nanogaps is a significant challenge. This article presents an advanced fabrication technology that addresses this issue, capable of realizing uniform and reliable vertical nanogap metasurfaces on a whole wafer of 100 mm diameter. By leveraging fast patterning techniques, such as variable-shaped and character projection electron beam lithography (EBL), along with atomic layer deposition (ALD) for defining a few nanometer gaps with sub-nanometer precision, we have developed a flexible nanofabrication technology to achieve gaps as narrow as 2 nm in plasmonic nanoantennas. The quality of our structures is experimentally demonstrated by the observation of resonant localized and collective modes corresponding to the lattice, with Q-factors reaching up to 165. Our technological process opens up new and exciting opportunities to fabricate macroscopic devices harnessing the strong enhancement of light–matter interaction at the single nanometer scale.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"30 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0343","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving field of plasmonic metasurfaces, achieving homogeneous, reliable, and reproducible fabrication of sub-5 nm dielectric nanogaps is a significant challenge. This article presents an advanced fabrication technology that addresses this issue, capable of realizing uniform and reliable vertical nanogap metasurfaces on a whole wafer of 100 mm diameter. By leveraging fast patterning techniques, such as variable-shaped and character projection electron beam lithography (EBL), along with atomic layer deposition (ALD) for defining a few nanometer gaps with sub-nanometer precision, we have developed a flexible nanofabrication technology to achieve gaps as narrow as 2 nm in plasmonic nanoantennas. The quality of our structures is experimentally demonstrated by the observation of resonant localized and collective modes corresponding to the lattice, with Q-factors reaching up to 165. Our technological process opens up new and exciting opportunities to fabricate macroscopic devices harnessing the strong enhancement of light–matter interaction at the single nanometer scale.
晶圆级纳米制造 5 纳米以下的等离子体元表面间隙
在快速发展的等离子体元表面领域,实现 5 纳米以下介电纳米间隙的均匀、可靠和可重复制造是一项重大挑战。本文介绍了一种解决这一问题的先进制造技术,它能够在直径为 100 毫米的整个晶片上实现均匀可靠的垂直纳米间隙元表面。通过利用快速图案化技术(如可变形状和特征投影电子束光刻(EBL))以及原子层沉积(ALD)技术,我们开发出了一种灵活的纳米制造技术,可在等离子纳米天线中实现窄至 2 纳米的间隙。通过观察与晶格相对应的共振局部和集体模式,我们的结构质量得到了实验证明,其 Q 因子高达 165。我们的技术工艺为在单纳米尺度上利用光-物质相互作用的强烈增强来制造宏观器件开辟了令人兴奋的新机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信