Dual-control of incubation effect for efficiently fabricating surface structures in fused silica

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhi Wang, Zhikun Xiang, Xiaowei Li, Mengnan Wu, Peng Yi, Chao Zhang, Yihao Yan, Xibiao Li, Xiangyu Zhang, Andong Wang, Lingling Huang
{"title":"Dual-control of incubation effect for efficiently fabricating surface structures in fused silica","authors":"Zhi Wang, Zhikun Xiang, Xiaowei Li, Mengnan Wu, Peng Yi, Chao Zhang, Yihao Yan, Xibiao Li, Xiangyu Zhang, Andong Wang, Lingling Huang","doi":"10.1515/nanoph-2024-0324","DOIUrl":null,"url":null,"abstract":"Fused silica with surface structures has potential applications in microfluidic, aerospace and other fields. To fabricate structures with high dimensional accuracy and surface quality is of paramount importance. However, it is indeed a challenge to strike a balance between accuracy and efficiency at the same time. Here, a temporally shaped femtosecond laser Bessel-beam-assisted etching method with dual-control of incubation effect is proposed to achieve this balance. Instead of layer-by-layer ablation continuously with Gaussian pulses, silica is modified discretely by double pulse Bessel beam with one single layer. During the modification process, incubation effect is dual-controlled in single shot process and spatial scanning process to generate even modified region efficiently. Then, the modified region is etched to form designed structures such as microholes, grooves, etc. The proposed method exhibits high efficiency for fabrication of surface structures in fused silica.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"2 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0324","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fused silica with surface structures has potential applications in microfluidic, aerospace and other fields. To fabricate structures with high dimensional accuracy and surface quality is of paramount importance. However, it is indeed a challenge to strike a balance between accuracy and efficiency at the same time. Here, a temporally shaped femtosecond laser Bessel-beam-assisted etching method with dual-control of incubation effect is proposed to achieve this balance. Instead of layer-by-layer ablation continuously with Gaussian pulses, silica is modified discretely by double pulse Bessel beam with one single layer. During the modification process, incubation effect is dual-controlled in single shot process and spatial scanning process to generate even modified region efficiently. Then, the modified region is etched to form designed structures such as microholes, grooves, etc. The proposed method exhibits high efficiency for fabrication of surface structures in fused silica.
双重控制孵化效应,高效制造熔融石英表面结构
具有表面结构的熔融石英在微流体、航空航天和其他领域具有潜在的应用价值。制造具有高尺寸精度和表面质量的结构至关重要。然而,如何同时兼顾精度和效率确实是一项挑战。在此,我们提出了一种具有双控孵育效应的时形飞秒激光贝塞尔光束辅助蚀刻方法,以实现这种平衡。不是用高斯脉冲连续逐层烧蚀,而是用双脉冲贝塞尔光束离散地对二氧化硅进行单层改性。在改性过程中,孵化效应在单射过程和空间扫描过程中受到双重控制,从而有效地产生均匀的改性区域。然后,对改性区域进行蚀刻,形成微孔、凹槽等设计结构。所提出的方法在熔融石英表面结构的制造方面具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信