Front Cover: Synthesis-Structure-Catalysis Relations in CHA Zeolites Applied for Selective Catalytic Reduction of NOx with Ammonia (ChemCatChem 16/2024)
Prof. Nao Tsunoji, Misae Onishi, Sou Sonoda, Dr. Takeshi Ohnishi, Prof. Masaru Ogura, Prof. Zen Maeno, Prof. Takashi Toyao, Prof. Ken-ichi Shimizu
{"title":"Front Cover: Synthesis-Structure-Catalysis Relations in CHA Zeolites Applied for Selective Catalytic Reduction of NOx with Ammonia (ChemCatChem 16/2024)","authors":"Prof. Nao Tsunoji, Misae Onishi, Sou Sonoda, Dr. Takeshi Ohnishi, Prof. Masaru Ogura, Prof. Zen Maeno, Prof. Takashi Toyao, Prof. Ken-ichi Shimizu","doi":"10.1002/cctc.202481601","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> represents the three formation routes of zeolite from different starting materials. Zeolites are crucial industrial catalysts, whereas their crystallization mechanism is still unclear, limiting their rational functional design. Nao Tsunoji and co-workers present the synthesis–structure–catalysis relation of CHA zeolite to get fundamental knowledge for intentionally controlling the function of zeolites. Different starting materials provide three different formation pathways to form CHA zeolites with different properties in the presence of tetraethylammonium hydroxide as an inexpensive organic structure directing agent. The knowledge related to origin of the catalytic durability was obtained based on their structural character, crystallization mechanism, and exhaust gas purification ability. More information can be found in the Research Article by Nao Tsunoji and co-workers (DOI: 10.1002/cctc.202400459).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 16","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202481601","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202481601","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Front Cover represents the three formation routes of zeolite from different starting materials. Zeolites are crucial industrial catalysts, whereas their crystallization mechanism is still unclear, limiting their rational functional design. Nao Tsunoji and co-workers present the synthesis–structure–catalysis relation of CHA zeolite to get fundamental knowledge for intentionally controlling the function of zeolites. Different starting materials provide three different formation pathways to form CHA zeolites with different properties in the presence of tetraethylammonium hydroxide as an inexpensive organic structure directing agent. The knowledge related to origin of the catalytic durability was obtained based on their structural character, crystallization mechanism, and exhaust gas purification ability. More information can be found in the Research Article by Nao Tsunoji and co-workers (DOI: 10.1002/cctc.202400459).
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.