Breast Cancer Detection Using Si-Doped MoS2 Channel-Based Thickness Engineered TFET Biosensor

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Priya Kaushal;Gargi Khanna
{"title":"Breast Cancer Detection Using Si-Doped MoS2 Channel-Based Thickness Engineered TFET Biosensor","authors":"Priya Kaushal;Gargi Khanna","doi":"10.1109/LSENS.2024.3438872","DOIUrl":null,"url":null,"abstract":"This letter investigates the electrical performance characteristics for breast cancer cell line detection by developing the Si-doped molybdenum disulfide thickness engineered tunnel field effect transistor biosensor. A complete study of the electrostatic field is presented, including the surface potential, electric field, transconductance (g\n<sub>m</sub>\n), threshold voltage (V\n<sub>th</sub>\n), \n<sc>on</small>\n current (I\n<sub>ON</sub>\n), and subthreshold swing. The sensitivity is analyzed in terms of drain current (I\n<sub>ds</sub>\n), g\n<sub>m</sub>\n, V\n<sub>th</sub>\n, I\n<sub>ON</sub>\n, I\n<sub>ON</sub>\n/I\n<sub>OFF</sub>\n ratio, and g\n<sub>m</sub>\n. Further, this study investigates the impact of device geometry variations, specifically cavity thickness, and length on the sensitivity of drain current (\n<inline-formula><tex-math>$\\text{S}_{\\rm{I}_{\\rm{ds}}}$</tex-math></inline-formula>\n), transconductance (\n<inline-formula><tex-math>$\\text{S}_{\\rm{g}_{\\rm{m}}}$</tex-math></inline-formula>\n ), threshold voltage (\n<inline-formula><tex-math>${\\text{S}}_{{{\\rm{V}}_{{\\rm{th}}}}}$</tex-math></inline-formula>\n), and \n<sc>on</small>\n current (\n<inline-formula><tex-math>${\\text{S}}_{{{\\rm{I}}_{{\\rm{ON}}}}}$</tex-math></inline-formula>\n). In addition, the impact of immobilized cell line occupancy on device performance has been examined. The presented biosensor is highly sensitive with increased cavity occupancy resulting in enhanced performance. As a result, array-based screening and diagnosis of breast cancer cells can be accomplished with the device, which is also economical and simpler to fabricate.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623876/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates the electrical performance characteristics for breast cancer cell line detection by developing the Si-doped molybdenum disulfide thickness engineered tunnel field effect transistor biosensor. A complete study of the electrostatic field is presented, including the surface potential, electric field, transconductance (g m ), threshold voltage (V th ), on current (I ON ), and subthreshold swing. The sensitivity is analyzed in terms of drain current (I ds ), g m , V th , I ON , I ON /I OFF ratio, and g m . Further, this study investigates the impact of device geometry variations, specifically cavity thickness, and length on the sensitivity of drain current ( $\text{S}_{\rm{I}_{\rm{ds}}}$ ), transconductance ( $\text{S}_{\rm{g}_{\rm{m}}}$ ), threshold voltage ( ${\text{S}}_{{{\rm{V}}_{{\rm{th}}}}}$ ), and on current ( ${\text{S}}_{{{\rm{I}}_{{\rm{ON}}}}}$ ). In addition, the impact of immobilized cell line occupancy on device performance has been examined. The presented biosensor is highly sensitive with increased cavity occupancy resulting in enhanced performance. As a result, array-based screening and diagnosis of breast cancer cells can be accomplished with the device, which is also economical and simpler to fabricate.
利用基于硅掺杂 MoS2 沟道厚度设计的 TFET 生物传感器检测乳腺癌
这封信通过开发掺杂二硫化钼的厚度工程隧道场效应晶体管生物传感器,研究了乳腺癌细胞系检测的电气性能特征。文中对静电场进行了全面研究,包括表面电势、电场、跨导(gm)、阈值电压(Vth)、导通电流(ION)和阈下摆动。分析了漏极电流 (Ids)、gm、Vth、ION、ION/IOFF 比率和 gm 的灵敏度。此外,本研究还探讨了器件几何形状变化(特别是腔体厚度和长度)对漏极电流($\text{S}_\rm{I}_{\rm{ds}}$)灵敏度的影响、跨导($\text{S}_{rm{g}_{\rm{m}}$)、阈值电压(${\text{S}}_{{\rm{V}}_{\rm{th}}}}}$)和导通电流(${\text{S}}_{{rm{I}}_{\rm{ON}}}}}$)的敏感性。此外,还研究了固定细胞系占位对设备性能的影响。随着空腔占有率的增加,所提出的生物传感器具有高灵敏度,从而提高了性能。因此,利用该装置可以实现基于阵列的乳腺癌细胞筛查和诊断,而且经济实惠,制作简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信