{"title":"On extended 1-perfect bitrades","authors":"Evgeny A. Bespalov, Denis S. Krotov","doi":"10.1016/j.disc.2024.114222","DOIUrl":null,"url":null,"abstract":"<div><p>Extended 1-perfect codes in the Hamming scheme <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, we prove that such bitrades exist if and only if <span><math><mi>n</mi><mo>=</mo><mi>l</mi><mi>q</mi><mo>+</mo><mn>2</mn></math></span>. For any <em>q</em>, we prove the nonexistence of extended 1-perfect bitrades if <em>n</em> is odd.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003534/pdfft?md5=7aec3e567941af5cc4f01f8b6f836939&pid=1-s2.0-S0012365X24003534-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Extended 1-perfect codes in the Hamming scheme can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For , we prove that such bitrades exist if and only if . For any q, we prove the nonexistence of extended 1-perfect bitrades if n is odd.