On extended 1-perfect bitrades

Pub Date : 2024-08-27 DOI:10.1016/j.disc.2024.114222
Evgeny A. Bespalov, Denis S. Krotov
{"title":"On extended 1-perfect bitrades","authors":"Evgeny A. Bespalov,&nbsp;Denis S. Krotov","doi":"10.1016/j.disc.2024.114222","DOIUrl":null,"url":null,"abstract":"<div><p>Extended 1-perfect codes in the Hamming scheme <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, we prove that such bitrades exist if and only if <span><math><mi>n</mi><mo>=</mo><mi>l</mi><mi>q</mi><mo>+</mo><mn>2</mn></math></span>. For any <em>q</em>, we prove the nonexistence of extended 1-perfect bitrades if <em>n</em> is odd.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003534/pdfft?md5=7aec3e567941af5cc4f01f8b6f836939&pid=1-s2.0-S0012365X24003534-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extended 1-perfect codes in the Hamming scheme H(n,q) can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in H(n,q) in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For q=2m, we prove that such bitrades exist if and only if n=lq+2. For any q, we prove the nonexistence of extended 1-perfect bitrades if n is odd.

分享
查看原文
关于扩展的 1-完美比特等级
汉明方案 H(n,q) 中的扩展 1-perfect 码可以等价地定义为在任意坐标上穿刺后变为 1-perfect 码的码,具有一定交集数组的完全规则码,具有一定权系数的均匀堆积码,相对于一定反码的直径完美码,具有一定对偶距离的距离-4 码。我们以五种不同的方式定义 H(n,q) 中的扩展 1-perfect bitrades,与扩展 1-perfect 码的不同定义相对应,并证明这些扩展 1-perfect bitrades 定义的等价性。对于 q=2m,我们证明当且仅当 n=lq+2 时存在这样的比特等级。对于任意 q,如果 n 为奇数,我们证明扩展的 1-perfect 比特等级不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信