Kim Van Tittelboom , Manu K. Mohan , Branko Šavija , Emmanuel Keita , Guowei Ma , Hongjian Du , Jacques Kruger , Laura Caneda-Martinez , Li Wang , Michiel Bekaert , Timothy Wangler , Zhendi Wang , Viktor Mechtcherine , Nicolas Roussel
{"title":"On the micro- and meso-structure and durability of 3D printed concrete elements","authors":"Kim Van Tittelboom , Manu K. Mohan , Branko Šavija , Emmanuel Keita , Guowei Ma , Hongjian Du , Jacques Kruger , Laura Caneda-Martinez , Li Wang , Michiel Bekaert , Timothy Wangler , Zhendi Wang , Viktor Mechtcherine , Nicolas Roussel","doi":"10.1016/j.cemconres.2024.107649","DOIUrl":null,"url":null,"abstract":"<div><p>3D printed concrete (3DPC) creates opportunities, including a reduction in construction waste and time and increased design freedom. However, because of the differences in the construction technique compared to traditional concrete casting, the structures also perform differently; namely, the micro- and meso-structure and durability are shown to be different. For the 3DP technology to find its way to the market, one needs to be aware of these differences and needs to know how to quantify the above-mentioned properties, as differences in the testing methodologies impose themselves when characterizing printed instead of cast concrete. In this paper, we elaborate on the test methods to investigate the micro- and meso-structure and the durability of 3DPC. We start with a discussion on the micro- and meso-structure of the 3D printed concrete and how it is different from conventional mold-cast concrete. An in-depth discussion of the test methods to assess the durability of 3D printed concrete is outlined. Reported findings related to the two aforementioned properties are discussed. In addition, we report on the technologies proposed to improve the durability performance of 3DPC, and we highlight the remaining challenges and opportunities related to 3DPC.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"185 ","pages":"Article 107649"},"PeriodicalIF":10.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002308","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3D printed concrete (3DPC) creates opportunities, including a reduction in construction waste and time and increased design freedom. However, because of the differences in the construction technique compared to traditional concrete casting, the structures also perform differently; namely, the micro- and meso-structure and durability are shown to be different. For the 3DP technology to find its way to the market, one needs to be aware of these differences and needs to know how to quantify the above-mentioned properties, as differences in the testing methodologies impose themselves when characterizing printed instead of cast concrete. In this paper, we elaborate on the test methods to investigate the micro- and meso-structure and the durability of 3DPC. We start with a discussion on the micro- and meso-structure of the 3D printed concrete and how it is different from conventional mold-cast concrete. An in-depth discussion of the test methods to assess the durability of 3D printed concrete is outlined. Reported findings related to the two aforementioned properties are discussed. In addition, we report on the technologies proposed to improve the durability performance of 3DPC, and we highlight the remaining challenges and opportunities related to 3DPC.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.