Unlocking the therapeutic capabilities of GPCR in the treatment of ischemic stroke: A translational literature

Q2 Medicine
Girish B S Pharm.D, Nikitha B S Pharm.D, Roopa K Pharm.D, Meghana C S Pharm.D, Srinivasan R M.Pharm, PhD
{"title":"Unlocking the therapeutic capabilities of GPCR in the treatment of ischemic stroke: A translational literature","authors":"Girish B S Pharm.D,&nbsp;Nikitha B S Pharm.D,&nbsp;Roopa K Pharm.D,&nbsp;Meghana C S Pharm.D,&nbsp;Srinivasan R M.Pharm, PhD","doi":"10.1016/j.medidd.2024.100197","DOIUrl":null,"url":null,"abstract":"<div><p>GPCRs are a class of membrane proteins that are essential to signal transduction, and this is a vital process in many different physiologies. The significant mortality rate and widespread occurrence of stroke highlight the need to accelerate the research to develop viable treatment agents. A promising prospect for the development of new treatment approaches is the increasing comprehension of the pathophysiology of stroke and the crucial roles played by GPCRs. Because of the blood clot, the glial cells’ vascular supply is abruptly cut off, which sets off a series of events that include inflammation and neuronal damage and ultimately lead to cell death. Numerous therapeutic treatments, including thrombolytic agents like tissue plasminogen activator and urokinase, have been discovered as potential neuroprotective medicines; however, their use is restricted because of the modest therapeutic window. Accepting that GPCRs are the pertinent factors in ischemic stroke, we explore the potential medicinal promise of GPCR-targeted treatments and the shortcomings that ought to be resolved in order to translate these discoveries to clinical cases.</p></div>","PeriodicalId":33528,"journal":{"name":"Medicine in Drug Discovery","volume":"24 ","pages":"Article 100197"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590098624000228/pdfft?md5=7ea1babb292d6f267fc89fefc770927a&pid=1-s2.0-S2590098624000228-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590098624000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

GPCRs are a class of membrane proteins that are essential to signal transduction, and this is a vital process in many different physiologies. The significant mortality rate and widespread occurrence of stroke highlight the need to accelerate the research to develop viable treatment agents. A promising prospect for the development of new treatment approaches is the increasing comprehension of the pathophysiology of stroke and the crucial roles played by GPCRs. Because of the blood clot, the glial cells’ vascular supply is abruptly cut off, which sets off a series of events that include inflammation and neuronal damage and ultimately lead to cell death. Numerous therapeutic treatments, including thrombolytic agents like tissue plasminogen activator and urokinase, have been discovered as potential neuroprotective medicines; however, their use is restricted because of the modest therapeutic window. Accepting that GPCRs are the pertinent factors in ischemic stroke, we explore the potential medicinal promise of GPCR-targeted treatments and the shortcomings that ought to be resolved in order to translate these discoveries to clinical cases.

Abstract Image

释放 GPCR 在治疗缺血性中风方面的治疗能力:转化文献
GPCR 是一类对信号转导至关重要的膜蛋白,是许多不同生理机能中的重要过程。中风死亡率高,发病范围广,因此需要加快研究,开发可行的治疗药物。对中风病理生理学和 GPCRs 关键作用的理解不断加深,为开发新的治疗方法带来了广阔的前景。由于血凝块的存在,神经胶质细胞的血管供应突然中断,引发了一系列事件,包括炎症和神经元损伤,最终导致细胞死亡。目前已经发现了许多潜在的神经保护药物,包括组织纤溶酶原激活剂和尿激酶等溶栓药物,但由于治疗窗口期较短,这些药物的使用受到了限制。鉴于 GPCR 是缺血性中风的相关因素,我们探讨了 GPCR 靶向治疗的潜在药用前景,以及将这些发现转化为临床病例需要解决的不足之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicine in Drug Discovery
Medicine in Drug Discovery Medicine-Pharmacology (medical)
CiteScore
8.30
自引率
0.00%
发文量
30
审稿时长
21 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信