{"title":"Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications","authors":"","doi":"10.1016/j.mee.2024.112261","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a low-profile wide scan angle multibeam conformal antenna array system with a novel feeding network for <span><math><mn>28</mn></math></span> GHz mm-wave 5G applications. The proposed antenna system utilizes two conventional branch-line couplers as its beamforming network. A novel feeding technique is applied to generate <span><math><mn>7</mn></math></span> beams with these couplers that are usually capable of generating <span><math><mn>2</mn></math></span> beams. The proposed solution provides a wide scanning range with a minimum realized gain of <span><math><mn>5</mn></math></span> dBi from <span><math><mo>−</mo><msup><mn>90</mn><mo>°</mo></msup></math></span> to <span><math><msup><mn>90</mn><mo>°</mo></msup></math></span> owing to this feeding approach and the peculiar placement of the array elements on a <span><math><mn>0.15</mn></math></span> mm thick R-F775 bendable substrate. The generated beams at their steer direction have the minimum and maximum gain values of <span><math><mn>6.5</mn></math></span> dBi and <span><math><mn>9.7</mn></math></span> dBi, respectively. A low-cost PCB manufacturing technique based on soft lithography and wet etching is used. The system dimensions excluding extra connector sections are <span><math><mn>67</mn><mo>×</mo><mn>15</mn><mo>×</mo><mn>3</mn><mspace></mspace><msup><mi>mm</mi><mn>3</mn></msup></math></span>. The proposed flexible design is suitable for lightweight 5G communication systems and handsets with its compact low-complexity beamforming network, and wide <span><math><msup><mn>180</mn><mo>°</mo></msup></math></span> continuous covering angle.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a low-profile wide scan angle multibeam conformal antenna array system with a novel feeding network for GHz mm-wave 5G applications. The proposed antenna system utilizes two conventional branch-line couplers as its beamforming network. A novel feeding technique is applied to generate beams with these couplers that are usually capable of generating beams. The proposed solution provides a wide scanning range with a minimum realized gain of dBi from to owing to this feeding approach and the peculiar placement of the array elements on a mm thick R-F775 bendable substrate. The generated beams at their steer direction have the minimum and maximum gain values of dBi and dBi, respectively. A low-cost PCB manufacturing technique based on soft lithography and wet etching is used. The system dimensions excluding extra connector sections are . The proposed flexible design is suitable for lightweight 5G communication systems and handsets with its compact low-complexity beamforming network, and wide continuous covering angle.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.