Kai Ming Ting , Takashi Washio , Ye Zhu , Yang Xu , Kaifeng Zhang
{"title":"Is it possible to find the single nearest neighbor of a query in high dimensions?","authors":"Kai Ming Ting , Takashi Washio , Ye Zhu , Yang Xu , Kaifeng Zhang","doi":"10.1016/j.artint.2024.104206","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate an open question in the study of the curse of dimensionality: Is it possible to find the single nearest neighbor of a query in high dimensions? Using the notion of (in)distinguishability to examine whether the feature map of a kernel is able to distinguish two distinct points in high dimensions, we analyze this ability of a metric-based Lipschitz continuous kernel as well as that of the recently introduced Isolation Kernel. Between the two kernels, we show that only Isolation Kernel has distinguishability and it performs consistently well in four tasks: indexed search for exact nearest neighbor search, anomaly detection using kernel density estimation, t-SNE visualization and SVM classification in both low and high dimensions, compared with distance, Gaussian and three other existing kernels.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"336 ","pages":"Article 104206"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224001425/pdfft?md5=a9c748954d0721f2e62c5fa4e574bf6e&pid=1-s2.0-S0004370224001425-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001425","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate an open question in the study of the curse of dimensionality: Is it possible to find the single nearest neighbor of a query in high dimensions? Using the notion of (in)distinguishability to examine whether the feature map of a kernel is able to distinguish two distinct points in high dimensions, we analyze this ability of a metric-based Lipschitz continuous kernel as well as that of the recently introduced Isolation Kernel. Between the two kernels, we show that only Isolation Kernel has distinguishability and it performs consistently well in four tasks: indexed search for exact nearest neighbor search, anomaly detection using kernel density estimation, t-SNE visualization and SVM classification in both low and high dimensions, compared with distance, Gaussian and three other existing kernels.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.