{"title":"The extremals of the Kahn-Saks inequality","authors":"Ramon van Handel , Alan Yan , Xinmeng Zeng","doi":"10.1016/j.aim.2024.109892","DOIUrl":null,"url":null,"abstract":"<div><p>A classical result of Kahn and Saks states that given any partially ordered set with two distinguished elements, the number of linear extensions in which the ranks of the distinguished elements differ by <em>k</em> is log-concave as a function of <em>k</em>. The log-concave sequences that can arise in this manner prove to exhibit a much richer structure, however, than is evident from log-concavity alone. The main result of this paper is a complete characterization of the extremals of the Kahn-Saks inequality: we obtain a detailed combinatorial understanding of where and what kind of geometric progressions can appear in these log-concave sequences. This settles a partial conjecture of Chan-Pak-Panova, while the analysis uncovers new extremals that were not previously conjectured. The proof relies on a much more general geometric mechanism—a hard Lefschetz theorem for nef classes that was obtained in the setting of convex polytopes by Shenfeld and Van Handel—which forms a model for the investigation of such structures in other combinatorial problems.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004079","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A classical result of Kahn and Saks states that given any partially ordered set with two distinguished elements, the number of linear extensions in which the ranks of the distinguished elements differ by k is log-concave as a function of k. The log-concave sequences that can arise in this manner prove to exhibit a much richer structure, however, than is evident from log-concavity alone. The main result of this paper is a complete characterization of the extremals of the Kahn-Saks inequality: we obtain a detailed combinatorial understanding of where and what kind of geometric progressions can appear in these log-concave sequences. This settles a partial conjecture of Chan-Pak-Panova, while the analysis uncovers new extremals that were not previously conjectured. The proof relies on a much more general geometric mechanism—a hard Lefschetz theorem for nef classes that was obtained in the setting of convex polytopes by Shenfeld and Van Handel—which forms a model for the investigation of such structures in other combinatorial problems.
卡恩和萨克斯的一个经典结果指出,给定任何具有两个区分元素的部分有序集合,区分元素的秩相差 k 的线性扩展的数目是 k 的对数凹函数。本文的主要成果是对卡恩-萨克斯不等式极值的完整表征:我们对这些对数凹序列中可能出现的几何级数的位置和类型有了详细的组合理解。这解决了 Chan-Pak-Panova 的部分猜想,同时分析发现了以前没有猜想过的新极值。该证明依赖于一种更为普遍的几何机制--申菲尔德和范-汉德尔在凸多胞形中获得的nef类的硬Lefschetz定理--它为研究其他组合问题中的此类结构提供了模型。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.