{"title":"Robust sparse recovery with sparse Bernoulli matrices via expanders","authors":"Pedro Abdalla","doi":"10.1016/j.acha.2024.101697","DOIUrl":null,"url":null,"abstract":"<div><p>Sparse binary matrices are of great interest in the field of sparse recovery, nonnegative compressed sensing, statistics in networks, and theoretical computer science. This class of matrices makes it possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, Bernoulli (<em>p</em>) matrices formed by independent identically distributed (i.i.d.) Bernoulli (<em>p</em>) random variables are of practical relevance in the context of noise-blind recovery in nonnegative compressed sensing.</p><p>In this work, we investigate the robust nullspace property of Bernoulli (<em>p</em>) matrices. Previous results in the literature establish that such matrices can accurately recover <em>n</em>-dimensional <em>s</em>-sparse vectors with <span><math><mi>m</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>c</mi><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mfrac><mi>log</mi><mo></mo><mfrac><mrow><mi>e</mi><mi>n</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></mrow></math></span> measurements, where <span><math><mi>c</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>≤</mo><mi>p</mi></math></span> is a constant dependent only on the parameter <em>p</em>. These results suggest that in the sparse regime, as <em>p</em> approaches zero, the (sparse) Bernoulli (<em>p</em>) matrix requires significantly more measurements than the minimal necessary, as achieved by standard isotropic subgaussian designs. However, we show that this is not the case.</p><p>Our main result characterizes, for a wide range of sparsity levels <em>s</em>, the smallest <em>p</em> for which sparse recovery can be achieved with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results and explore connections with the theory of invertibility of discrete random matrices and integer compressed sensing.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101697"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000745/pdfft?md5=da55acefd115269f8b0ce4f5a4a72295&pid=1-s2.0-S1063520324000745-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse binary matrices are of great interest in the field of sparse recovery, nonnegative compressed sensing, statistics in networks, and theoretical computer science. This class of matrices makes it possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, Bernoulli (p) matrices formed by independent identically distributed (i.i.d.) Bernoulli (p) random variables are of practical relevance in the context of noise-blind recovery in nonnegative compressed sensing.
In this work, we investigate the robust nullspace property of Bernoulli (p) matrices. Previous results in the literature establish that such matrices can accurately recover n-dimensional s-sparse vectors with measurements, where is a constant dependent only on the parameter p. These results suggest that in the sparse regime, as p approaches zero, the (sparse) Bernoulli (p) matrix requires significantly more measurements than the minimal necessary, as achieved by standard isotropic subgaussian designs. However, we show that this is not the case.
Our main result characterizes, for a wide range of sparsity levels s, the smallest p for which sparse recovery can be achieved with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results and explore connections with the theory of invertibility of discrete random matrices and integer compressed sensing.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.