{"title":"Versatile and Tunable Performance of PVA/PAM Tridimensional Hydrogel Models for Tissues and Organs: Augmenting Realism in Advanced Surgical Training.","authors":"ShiJie Yu, XiaoDong Xu, Liang Ma, Fei Zhao, JinLei Mao, Jing Zhang, ZhiFei Wang","doi":"10.1021/acsabm.4c00873","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing complexity and difficulty of surgical procedures have led to a rise in medical errors within clinical settings in recent years. Gastrointestinal diseases, in particular, present significant medical challenges and impose substantial economic burdens, underscoring the urgent need for experiential, high-fidelity gastrointestinal surgical training tools. This study leverages patient-specific computed tomography (CT) and magnetic resonance imaging (MRI) data, combined with 3D printed manufacturing, to develop hydrogel organ models with tunable performance and tissue-mimicking softness. These properties are achieved by regulating the freeze-thaw cycles, cross-linking agents, and the concentration of incorporated antibacterial nanoparticles in DN hydrogels. Through the application of indirect 3D printing and the \"sacrificial material method\", we successfully fabricate organ tissues such as the stomach, intestines, and blood vessels with high precision. In ex vivo surgical training demonstrations, these tissue-like soft hydrogels provide an effective platform for preoperative simulation and surgical training in digestive surgery, accommodating various surgical procedures and accurately simulating intraoperative bleeding. The development of advanced bionic organ models with specific and tunable characteristics based on DN hydrogels is poised to significantly advance surgical training, medical device testing, and the reform of medical education.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"6261-6275"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c00873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing complexity and difficulty of surgical procedures have led to a rise in medical errors within clinical settings in recent years. Gastrointestinal diseases, in particular, present significant medical challenges and impose substantial economic burdens, underscoring the urgent need for experiential, high-fidelity gastrointestinal surgical training tools. This study leverages patient-specific computed tomography (CT) and magnetic resonance imaging (MRI) data, combined with 3D printed manufacturing, to develop hydrogel organ models with tunable performance and tissue-mimicking softness. These properties are achieved by regulating the freeze-thaw cycles, cross-linking agents, and the concentration of incorporated antibacterial nanoparticles in DN hydrogels. Through the application of indirect 3D printing and the "sacrificial material method", we successfully fabricate organ tissues such as the stomach, intestines, and blood vessels with high precision. In ex vivo surgical training demonstrations, these tissue-like soft hydrogels provide an effective platform for preoperative simulation and surgical training in digestive surgery, accommodating various surgical procedures and accurately simulating intraoperative bleeding. The development of advanced bionic organ models with specific and tunable characteristics based on DN hydrogels is poised to significantly advance surgical training, medical device testing, and the reform of medical education.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.