Selassie Tagoh, Lisa M Hamm, Dietrich S Schwarzkopf, Steven C Dakin
{"title":"Flicker adaptation improves acuity for briefly presented stimuli by reducing crowding.","authors":"Selassie Tagoh, Lisa M Hamm, Dietrich S Schwarzkopf, Steven C Dakin","doi":"10.1167/jov.24.8.15","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptation to flickering/dynamic noise improves visual acuity for briefly presented stimuli (Arnold et al., 2016). Here, we investigate whether such adaptation operates directly on our ability to see detail or by changing fixational eye movements and pupil size or by reducing visual crowding. Following earlier work, visual acuity was measured in observers who were either unadapted or who had adapted to a 60-Hz flickering noise pattern. Participants reported the orientation of a white tumbling-T target (four-alternative forced choice [4AFC], ⊤⊣⊥⊢). The target was presented for 110 ms either in isolation or flanked by randomly oriented T's (e.g., ⊣⊤⊢) followed by an isolated (+) or flanked (+++) mask, respectively. We measured fixation stability (using an infrared eye tracker) while observers performed the task (with and without adaptation). Visual acuity improved modestly (around 8.4%) for flanked optotypes following adaptation to flicker (mean, -0.038 ± 0.063 logMAR; p = 0.015; BF10 = 3.66) but did not when measured with isolated letters (mean, -0.008 ± 0.055 logMAR; p = 0.5; BF10 = 0.29). The magnitude of acuity improvement was associated with individuals' (unadapted) susceptibility to crowding (the ratio of crowded to uncrowded acuity; r = -0.58, p = 0.008, BF10 = 7.70) but to neither fixation stability nor pupil size. Confirming previous reports, flicker improved acuity for briefly presented stimuli, but we show that this was only the case for crowded letters. These improvements likely arise from attenuation of sensitivity to a transient low spatial frequency (SF) image structure (Arnold et al., 2016; Tagoh et al., 2022), which may, for example, reduce masking of high SFs by low SFs. We also suggest that this attenuation could reduce backward masking and so reduce foveal crowding.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.8.15","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptation to flickering/dynamic noise improves visual acuity for briefly presented stimuli (Arnold et al., 2016). Here, we investigate whether such adaptation operates directly on our ability to see detail or by changing fixational eye movements and pupil size or by reducing visual crowding. Following earlier work, visual acuity was measured in observers who were either unadapted or who had adapted to a 60-Hz flickering noise pattern. Participants reported the orientation of a white tumbling-T target (four-alternative forced choice [4AFC], ⊤⊣⊥⊢). The target was presented for 110 ms either in isolation or flanked by randomly oriented T's (e.g., ⊣⊤⊢) followed by an isolated (+) or flanked (+++) mask, respectively. We measured fixation stability (using an infrared eye tracker) while observers performed the task (with and without adaptation). Visual acuity improved modestly (around 8.4%) for flanked optotypes following adaptation to flicker (mean, -0.038 ± 0.063 logMAR; p = 0.015; BF10 = 3.66) but did not when measured with isolated letters (mean, -0.008 ± 0.055 logMAR; p = 0.5; BF10 = 0.29). The magnitude of acuity improvement was associated with individuals' (unadapted) susceptibility to crowding (the ratio of crowded to uncrowded acuity; r = -0.58, p = 0.008, BF10 = 7.70) but to neither fixation stability nor pupil size. Confirming previous reports, flicker improved acuity for briefly presented stimuli, but we show that this was only the case for crowded letters. These improvements likely arise from attenuation of sensitivity to a transient low spatial frequency (SF) image structure (Arnold et al., 2016; Tagoh et al., 2022), which may, for example, reduce masking of high SFs by low SFs. We also suggest that this attenuation could reduce backward masking and so reduce foveal crowding.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.