Comparison of accuracy and speed between plaster casting, high-cost and low-cost 3D scanners to capture foot, ankle and lower leg morphology of children requiring ankle-foot orthoses.
{"title":"Comparison of accuracy and speed between plaster casting, high-cost and low-cost 3D scanners to capture foot, ankle and lower leg morphology of children requiring ankle-foot orthoses.","authors":"Muhannad Farhan, Joyce Zhanzi Wang, Rachael Warncke, Tegan Laura Cheng, Joshua Burns","doi":"10.1002/jfa2.70006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional plaster-cast fabrication of an ankle-foot orthosis (AFO), although robust, is time-consuming and cumbersome. 3D scanning is quickly gaining attention as an alternative to plaster casting the foot and ankle region for AFO fabrication. The aim of this study was to assess the accuracy and speed of two high-performing 3D scanners compared with plaster casting in pediatric patients requiring an AFO.</p><p><strong>Methods: </strong>Ten participants (mean age 10.0 ± 3.9 years) prescribed AFOs for a movement disorder were 3D scanned with the high-cost Artec Eva (Eva) and low-cost Structure Sensor II (SSII) using one-person (1p) and two-person (2p) protocols. Accuracy and speed for both 3D scanners were compared with corresponding plaster cast measures (≤5% acceptable difference). Bland and Altman plots were generated to show mean bias and limits of agreement.</p><p><strong>Results: </strong>Overall, Eva and SSII were accurate for foot, ankle, and lower leg key clinical landmarks (Eva-1p: 4.4 ± 7.3%; Eva-2p: 3.2 ± 7.5%; SSII-1p: 0.6 ± 7.4%; SSII-2p: 0.7 ± 8.2%). Bland and Altman plots for the SSII demonstrated lower biases for 1p (bias 0.5 mm, LoA: -12.4-13.5 mm) and 2p (0.4 mm, LoA: -11.4-12.2 mm) protocols compared with Eva for 1p (bias 2.3 mm, LoA: -8.0-12.7 mm) and 2p (1.8 mm, LoA: -10.7-14.3 mm) protocols. The SSII 2p protocol was the fastest 3D scanning method (26.4 ± 11.1 s).</p><p><strong>Conclusions: </strong>The high-cost Eva and low-cost SSII 3D scanners using the 1p and 2p protocols produced comparable accuracy and faster capture of key clinical landmarks compared with plaster cast measures for the fabrication of AFOs in pediatric patients.</p>","PeriodicalId":49164,"journal":{"name":"Journal of Foot and Ankle Research","volume":"17 3","pages":"e70006"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Foot and Ankle Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jfa2.70006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Traditional plaster-cast fabrication of an ankle-foot orthosis (AFO), although robust, is time-consuming and cumbersome. 3D scanning is quickly gaining attention as an alternative to plaster casting the foot and ankle region for AFO fabrication. The aim of this study was to assess the accuracy and speed of two high-performing 3D scanners compared with plaster casting in pediatric patients requiring an AFO.
Methods: Ten participants (mean age 10.0 ± 3.9 years) prescribed AFOs for a movement disorder were 3D scanned with the high-cost Artec Eva (Eva) and low-cost Structure Sensor II (SSII) using one-person (1p) and two-person (2p) protocols. Accuracy and speed for both 3D scanners were compared with corresponding plaster cast measures (≤5% acceptable difference). Bland and Altman plots were generated to show mean bias and limits of agreement.
Results: Overall, Eva and SSII were accurate for foot, ankle, and lower leg key clinical landmarks (Eva-1p: 4.4 ± 7.3%; Eva-2p: 3.2 ± 7.5%; SSII-1p: 0.6 ± 7.4%; SSII-2p: 0.7 ± 8.2%). Bland and Altman plots for the SSII demonstrated lower biases for 1p (bias 0.5 mm, LoA: -12.4-13.5 mm) and 2p (0.4 mm, LoA: -11.4-12.2 mm) protocols compared with Eva for 1p (bias 2.3 mm, LoA: -8.0-12.7 mm) and 2p (1.8 mm, LoA: -10.7-14.3 mm) protocols. The SSII 2p protocol was the fastest 3D scanning method (26.4 ± 11.1 s).
Conclusions: The high-cost Eva and low-cost SSII 3D scanners using the 1p and 2p protocols produced comparable accuracy and faster capture of key clinical landmarks compared with plaster cast measures for the fabrication of AFOs in pediatric patients.
期刊介绍:
Journal of Foot and Ankle Research, the official journal of the Australian Podiatry Association and The College of Podiatry (UK), is an open access journal that encompasses all aspects of policy, organisation, delivery and clinical practice related to the assessment, diagnosis, prevention and management of foot and ankle disorders.
Journal of Foot and Ankle Research covers a wide range of clinical subject areas, including diabetology, paediatrics, sports medicine, gerontology and geriatrics, foot surgery, physical therapy, dermatology, wound management, radiology, biomechanics and bioengineering, orthotics and prosthetics, as well the broad areas of epidemiology, policy, organisation and delivery of services related to foot and ankle care.
The journal encourages submissions from all health professionals who manage lower limb conditions, including podiatrists, nurses, physical therapists and physiotherapists, orthopaedists, manual therapists, medical specialists and general medical practitioners, as well as health service researchers concerned with foot and ankle care.
The Australian Podiatry Association and the College of Podiatry (UK) have reserve funds to cover the article-processing charge for manuscripts submitted by its members. Society members can email the appropriate contact at Australian Podiatry Association or The College of Podiatry to obtain the corresponding code to enter on submission.