{"title":"Differential patterns of sweat and blood lactate concentration response during incremental exercise in varied ambient temperatures: A pilot study.","authors":"Naoya Takei, Takeru Inaba, Yuki Morita, Katsuyuki Kakinoki, Hideo Hatta, Yu Kitaoka","doi":"10.1080/23328940.2024.2375693","DOIUrl":null,"url":null,"abstract":"<p><p>Blood lactate concentration during exercise is a reliable indicator of energy metabolism and endurance performance. Lactate is also present in sweat, and sweating plays an important role in thermoregulation, especially in hot conditions. Recently, wearable sensors have enabled the real-time and noninvasive measurement of sweat lactate concentration, potentially serving as an alternative indicator of blood lactate response. However, the evidence regarding the relationship between sweat and blood lactate responses during incremental exercise in hot conditions is lacking. In a randomized cross-over design, six highly trained male runners completed two incremental treadmill tests under normal (20°C/50%RH) or hot (30°C/50%RH) conditions. The tests include 3-min running stages and 1-min recovery, starting at 12 km/h and increasing by 1 km/h at each stage. Blood and sweat lactate concentrations were measured at each stage to determine blood and sweat lactate thresholds (LT). Blood lactate concentrations were higher under hot conditions (<i>p</i> < 0.01), but there was no difference in the response pattern or velocity at blood LT between conditions. Significant early increase (<i>p</i> < 0.01) in sweat lactate and low velocity at sweat LT (<i>p</i> < 0.05) were observed under hot conditions. A significant correlation between blood and sweat lactate concentrations was found under normal conditions (<i>p</i> < 0.001) but not under hot conditions, and no significant correlations were observed between the velocity at blood and sweat LT. In conclusion, sweat lactate concentration does not consistently reflect blood lactate concentration during incremental exercise.</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"11 3","pages":"247-253"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2024.2375693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Blood lactate concentration during exercise is a reliable indicator of energy metabolism and endurance performance. Lactate is also present in sweat, and sweating plays an important role in thermoregulation, especially in hot conditions. Recently, wearable sensors have enabled the real-time and noninvasive measurement of sweat lactate concentration, potentially serving as an alternative indicator of blood lactate response. However, the evidence regarding the relationship between sweat and blood lactate responses during incremental exercise in hot conditions is lacking. In a randomized cross-over design, six highly trained male runners completed two incremental treadmill tests under normal (20°C/50%RH) or hot (30°C/50%RH) conditions. The tests include 3-min running stages and 1-min recovery, starting at 12 km/h and increasing by 1 km/h at each stage. Blood and sweat lactate concentrations were measured at each stage to determine blood and sweat lactate thresholds (LT). Blood lactate concentrations were higher under hot conditions (p < 0.01), but there was no difference in the response pattern or velocity at blood LT between conditions. Significant early increase (p < 0.01) in sweat lactate and low velocity at sweat LT (p < 0.05) were observed under hot conditions. A significant correlation between blood and sweat lactate concentrations was found under normal conditions (p < 0.001) but not under hot conditions, and no significant correlations were observed between the velocity at blood and sweat LT. In conclusion, sweat lactate concentration does not consistently reflect blood lactate concentration during incremental exercise.
运动时血液中的乳酸浓度是能量代谢和耐力表现的可靠指标。乳酸盐也存在于汗液中,而出汗在体温调节中发挥着重要作用,尤其是在炎热条件下。最近,可穿戴传感器实现了对汗液乳酸盐浓度的实时、无创测量,有可能成为血液乳酸盐反应的替代指标。然而,有关在高温条件下进行增量运动时汗液和血液乳酸反应之间关系的证据还很缺乏。在随机交叉设计中,六名训练有素的男性跑步者在正常(20°C/50%RH)或炎热(30°C/50%RH)条件下完成了两项增量跑步机测试。测试包括 3 分钟的跑步阶段和 1 分钟的恢复阶段,起始速度为 12 公里/小时,每个阶段增加 1 公里/小时。在每个阶段测量血液和汗液乳酸浓度,以确定血液和汗液乳酸阈值(LT)。在高温条件下,血液乳酸浓度较高(p p p p