Unsupervised Liu-type shrinkage estimators for mixture of regression models.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Statistical Methods in Medical Research Pub Date : 2024-08-01 Epub Date: 2024-08-28 DOI:10.1177/09622802241259175
Elsayed Ghanem, Armin Hatefi, Hamid Usefi
{"title":"Unsupervised Liu-type shrinkage estimators for mixture of regression models.","authors":"Elsayed Ghanem, Armin Hatefi, Hamid Usefi","doi":"10.1177/09622802241259175","DOIUrl":null,"url":null,"abstract":"<p><p>The mixture of probabilistic regression models is one of the most common techniques to incorporate the information of covariates into learning of the population heterogeneity. Despite its flexibility, unreliable estimates can occur due to multicollinearity among covariates. In this paper, we develop Liu-type shrinkage methods through an unsupervised learning approach to estimate the model coefficients in the presence of multicollinearity. We evaluate the performance of our proposed methods via classification and stochastic versions of the expectation-maximization algorithm. We show using numerical simulations that the proposed methods outperform their Ridge and maximum likelihood counterparts. Finally, we apply our methods to analyze the bone mineral data of women aged 50 and older.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1376-1391"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241259175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The mixture of probabilistic regression models is one of the most common techniques to incorporate the information of covariates into learning of the population heterogeneity. Despite its flexibility, unreliable estimates can occur due to multicollinearity among covariates. In this paper, we develop Liu-type shrinkage methods through an unsupervised learning approach to estimate the model coefficients in the presence of multicollinearity. We evaluate the performance of our proposed methods via classification and stochastic versions of the expectation-maximization algorithm. We show using numerical simulations that the proposed methods outperform their Ridge and maximum likelihood counterparts. Finally, we apply our methods to analyze the bone mineral data of women aged 50 and older.

回归模型混合物的无监督刘型收缩估计器。
概率混合回归模型是将协变量信息纳入群体异质性学习的最常用技术之一。尽管它具有灵活性,但由于协变量之间的多重共线性,可能会出现不可靠的估计。在本文中,我们通过无监督学习方法开发了刘式收缩方法,以估计存在多重共线性的模型系数。我们通过分类和随机版本的期望最大化算法来评估所提出方法的性能。通过数值模拟,我们发现所提出的方法优于 Ridge 和最大似然法。最后,我们将我们的方法应用于分析 50 岁及以上女性的骨矿物质数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信