{"title":"A Rocking-chair Rechargeable Seawater Battery.","authors":"Jialong Wu, Yongshuo Zheng, Pengfei Zhang, Xiaoshuang Rao, Zhenyu Zhang, Jin-Ming Wu, Wei Wen","doi":"10.34133/research.0461","DOIUrl":null,"url":null,"abstract":"<p><p>Seawater batteries are attracting continuous attention because seawater as an electrolyte is inexhaustible, eco-friendly, and free of charge. However, the rechargeable seawater batteries developed nowadays show poor reversibility and short cycle life, due to the very limited electrode materials and complicated yet inappropriate working mechanism. Here, we propose a rechargeable seawater battery that works through a rocking-chair mechanism encountered in commercial lithium ion batteries, enabled by intercalation-type inorganic electrode materials of open-framework-type cathode and Na-ion conducting membrane-type anode. The rechargeable seawater battery achieves a high specific energy of 80.0 Wh/kg at 1,226.9 W/kg and a high specific power of 7,495.0 W/kg at 23.7 Wh/kg. Additionally, it exhibits excellent cycling stability, retaining 66.3% of its capacity over 1,000 cycles. This work represents a promising avenue for developing sustainable aqueous batteries with low costs.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0461","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater batteries are attracting continuous attention because seawater as an electrolyte is inexhaustible, eco-friendly, and free of charge. However, the rechargeable seawater batteries developed nowadays show poor reversibility and short cycle life, due to the very limited electrode materials and complicated yet inappropriate working mechanism. Here, we propose a rechargeable seawater battery that works through a rocking-chair mechanism encountered in commercial lithium ion batteries, enabled by intercalation-type inorganic electrode materials of open-framework-type cathode and Na-ion conducting membrane-type anode. The rechargeable seawater battery achieves a high specific energy of 80.0 Wh/kg at 1,226.9 W/kg and a high specific power of 7,495.0 W/kg at 23.7 Wh/kg. Additionally, it exhibits excellent cycling stability, retaining 66.3% of its capacity over 1,000 cycles. This work represents a promising avenue for developing sustainable aqueous batteries with low costs.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.