Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weihao Zeng, Fanjie Xia, Juan Wang, Jinlong Yang, Haoyang Peng, Wei Shu, Quan Li, Hong Wang, Guan Wang, Shichun Mu, Jinsong Wu
{"title":"Entropy-increased LiMn<sub>2</sub>O<sub>4</sub>-based positive electrodes for fast-charging lithium metal batteries.","authors":"Weihao Zeng, Fanjie Xia, Juan Wang, Jinlong Yang, Haoyang Peng, Wei Shu, Quan Li, Hong Wang, Guan Wang, Shichun Mu, Jinsong Wu","doi":"10.1038/s41467-024-51168-1","DOIUrl":null,"url":null,"abstract":"<p><p>Fast-charging, non-aqueous lithium-based batteries are desired for practical applications. In this regard, LiMn<sub>2</sub>O<sub>4</sub> is considered an appealing positive electrode active material because of its favourable ionic diffusivity due to the presence of three-dimensional Li-ion diffusion channels. However, LiMn<sub>2</sub>O<sub>4</sub> exhibits inadequate rate capabilities and rapid structural degradation at high currents. To circumvent these issues, here we introduce quintuple low-valence cations to increase the entropy of LiMn<sub>2</sub>O<sub>4</sub>. As a result, the entropy-increased LiMn<sub>2</sub>O<sub>4</sub>-based material, i.e., LiMn<sub>1.9</sub>Cu<sub>0.02</sub>Mg<sub>0.02</sub>Fe<sub>0.02</sub>Zn<sub>0.02</sub>Ni<sub>0.02</sub>O<sub>4</sub>, when tested in non-aqueous lithium metal coin cell configuration, enable 1000 cell cycles at 1.48 A g<sup>-1</sup> (corresponding to a cell charging time of 4 minutes) and 25°C with a discharge capacity retention of about 80%. We demonstrate that the increased entropy in LiMn<sub>2</sub>O<sub>4</sub> leads to an increase in the disordering of dopant cations and a contracted local structure, where the enlarged LiO<sub>4</sub> space and enhanced Mn-O covalency improve the Li-ion transport and stabilize the diffusion channels. We also prove that stress caused by cycling at a high cell state of charge is relieved through elastic deformation via a solid-solution transition, thus avoiding structural degradation upon prolonged cycling.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51168-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fast-charging, non-aqueous lithium-based batteries are desired for practical applications. In this regard, LiMn2O4 is considered an appealing positive electrode active material because of its favourable ionic diffusivity due to the presence of three-dimensional Li-ion diffusion channels. However, LiMn2O4 exhibits inadequate rate capabilities and rapid structural degradation at high currents. To circumvent these issues, here we introduce quintuple low-valence cations to increase the entropy of LiMn2O4. As a result, the entropy-increased LiMn2O4-based material, i.e., LiMn1.9Cu0.02Mg0.02Fe0.02Zn0.02Ni0.02O4, when tested in non-aqueous lithium metal coin cell configuration, enable 1000 cell cycles at 1.48 A g-1 (corresponding to a cell charging time of 4 minutes) and 25°C with a discharge capacity retention of about 80%. We demonstrate that the increased entropy in LiMn2O4 leads to an increase in the disordering of dopant cations and a contracted local structure, where the enlarged LiO4 space and enhanced Mn-O covalency improve the Li-ion transport and stabilize the diffusion channels. We also prove that stress caused by cycling at a high cell state of charge is relieved through elastic deformation via a solid-solution transition, thus avoiding structural degradation upon prolonged cycling.

Abstract Image

用于快速充电锂金属电池的熵增型锰酸锂正极。
快速充电、非水基锂电池是实际应用的理想选择。在这方面,由于存在三维锂离子扩散通道,锰酸锂具有良好的离子扩散性,因此被认为是一种极具吸引力的正极活性材料。然而,LiMn2O4 的速率能力不足,在大电流下结构会迅速退化。为了规避这些问题,我们在这里引入了五倍低价阳离子,以增加 LiMn2O4 的熵。因此,熵增加的 LiMn2O4 基材料(即 LiMn1.9Cu0.02Mg0.02Fe0.02Zn0.02Ni0.02O4 )在非水锂金属纽扣电池配置中进行测试时,可在 1.48 A g-1(相当于电池充电时间 4 分钟)和 25°C 温度条件下实现 1000 次电池循环,放电容量保持率约为 80%。我们证明,LiMn2O4 中熵的增加导致掺杂阳离子的无序化和局部结构的收缩,其中扩大的 LiO4 空间和增强的 Mn-O 共价性改善了锂离子传输并稳定了扩散通道。我们还证明,在高电荷电池状态下循环所产生的应力可通过固溶转变的弹性变形得到缓解,从而避免了长时间循环后的结构退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信