{"title":"Dexmedetomidine inhibits the migration, invasion, and glycolysis of glioblastoma cells by lactylation of c-myc.","authors":"Jianglian Zhu, Yundong Zhang","doi":"10.1080/01616412.2024.2395069","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GBM) is a brain tumor with poor prognosis. Dexmedetomidine (Dex) regulates the biological behaviors of tumor cells to accelerate or decelerate cancer progression.</p><p><strong>Objective: </strong>We investigated the effects of Dex on the migration, invasion, and glycolysis in GBM.</p><p><strong>Methods: </strong>The concentration of Dex was determined using the cell counting kit-8 assay. The impacts of Dex on biological behaviors of GBM cells were assessed using Transwell assay, XF96 extracellular flux analysis, and western blot. The expression of c-Myc was examined using reverse transcription-quantitative polymerase chain reaction. The lactylation or stability of c-Myc was measured by western blot after immunoprecipitation or cycloheximide treatment.</p><p><strong>Results: </strong>We found that Dex (200 nM) inhibited GBM cell viability, migration, invasion, and glycolysis. C-Myc was highly expressed in GBM cells and was decreased by Dex treatment. Moreover, Dex suppressed lactylated c-Myc levels via suppressing glycolysis, thereby reducing the protein stability of c-Myc. Sodium lactate treatment abrogated the effects of Dex on the biological behaviors of GBM cells.</p><p><strong>Conclusion: </strong>Dex suppressed the migration, invasion, and glycolysis of GBM cells via inhibiting lactylation of c-Myc and suppressing the c-Myc stability, suggesting that Dex may be a novel therapeutic drug for GBM treatment.</p>","PeriodicalId":19131,"journal":{"name":"Neurological Research","volume":" ","pages":"1105-1112"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01616412.2024.2395069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioblastoma (GBM) is a brain tumor with poor prognosis. Dexmedetomidine (Dex) regulates the biological behaviors of tumor cells to accelerate or decelerate cancer progression.
Objective: We investigated the effects of Dex on the migration, invasion, and glycolysis in GBM.
Methods: The concentration of Dex was determined using the cell counting kit-8 assay. The impacts of Dex on biological behaviors of GBM cells were assessed using Transwell assay, XF96 extracellular flux analysis, and western blot. The expression of c-Myc was examined using reverse transcription-quantitative polymerase chain reaction. The lactylation or stability of c-Myc was measured by western blot after immunoprecipitation or cycloheximide treatment.
Results: We found that Dex (200 nM) inhibited GBM cell viability, migration, invasion, and glycolysis. C-Myc was highly expressed in GBM cells and was decreased by Dex treatment. Moreover, Dex suppressed lactylated c-Myc levels via suppressing glycolysis, thereby reducing the protein stability of c-Myc. Sodium lactate treatment abrogated the effects of Dex on the biological behaviors of GBM cells.
Conclusion: Dex suppressed the migration, invasion, and glycolysis of GBM cells via inhibiting lactylation of c-Myc and suppressing the c-Myc stability, suggesting that Dex may be a novel therapeutic drug for GBM treatment.
期刊介绍:
Neurological Research is an international, peer-reviewed journal for reporting both basic and clinical research in the fields of neurosurgery, neurology, neuroengineering and neurosciences. It provides a medium for those who recognize the wider implications of their work and who wish to be informed of the relevant experience of others in related and more distant fields.
The scope of the journal includes:
•Stem cell applications
•Molecular neuroscience
•Neuropharmacology
•Neuroradiology
•Neurochemistry
•Biomathematical models
•Endovascular neurosurgery
•Innovation in neurosurgery.