Zhenyang Gao, Xiaolin Zhang, Yi Wu, Minh-Son Pham, Yang Lu, Cunjuan Xia, Haowei Wang, Hongze Wang
{"title":"Damage-programmable design of metamaterials achieving crack-resisting mechanisms seen in nature.","authors":"Zhenyang Gao, Xiaolin Zhang, Yi Wu, Minh-Son Pham, Yang Lu, Cunjuan Xia, Haowei Wang, Hongze Wang","doi":"10.1038/s41467-024-51757-0","DOIUrl":null,"url":null,"abstract":"<p><p>The fracture behaviour of artificial metamaterials often leads to catastrophic failures with limited resistance to crack propagation. In contrast, natural materials such as bones and ceramics possess microstructures that give rise to spatially controllable crack path and toughened material resistance to crack advances. This study presents an approach that is inspired by nature's strengthening mechanisms to develop a systematic design method enabling damage-programmable metamaterials with engineerable microfibers in the cells that can spatially program the micro-scale crack behaviour. Machine learning is applied to provide an effective design engine that accelerate the generation of damage-programmable cells that offer advanced toughening functionality such as crack bowing, crack deflection, and shielding seen in natural materials; and are optimised for a given programming of crack path. This paper shows that such toughening features effectively enable crack-resisting mechanisms on the basis of the crack tip interactions, crack shielding, crack bridging and synergistic combinations of these mechanisms, increasing up to 1,235% absorbed fracture energy in comparison to conventional metamaterials. The proposed approach can have broad implications in the design of damage-tolerant materials, and lightweight engineering systems where significant fracture resistances or highly programmable damages for high performances are sought after.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"7373"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51757-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The fracture behaviour of artificial metamaterials often leads to catastrophic failures with limited resistance to crack propagation. In contrast, natural materials such as bones and ceramics possess microstructures that give rise to spatially controllable crack path and toughened material resistance to crack advances. This study presents an approach that is inspired by nature's strengthening mechanisms to develop a systematic design method enabling damage-programmable metamaterials with engineerable microfibers in the cells that can spatially program the micro-scale crack behaviour. Machine learning is applied to provide an effective design engine that accelerate the generation of damage-programmable cells that offer advanced toughening functionality such as crack bowing, crack deflection, and shielding seen in natural materials; and are optimised for a given programming of crack path. This paper shows that such toughening features effectively enable crack-resisting mechanisms on the basis of the crack tip interactions, crack shielding, crack bridging and synergistic combinations of these mechanisms, increasing up to 1,235% absorbed fracture energy in comparison to conventional metamaterials. The proposed approach can have broad implications in the design of damage-tolerant materials, and lightweight engineering systems where significant fracture resistances or highly programmable damages for high performances are sought after.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.