{"title":"Excellent Hole Mobility and Out-of-Plane Piezoelectricity in X-Penta-Graphene (X = Si or Ge) with Poisson's Ratio Inversion.","authors":"Sitong Liu, Xiao Shang, Xizhe Liu, Xiaochun Wang, Fuchun Liu, Jun Zhang","doi":"10.3390/nano14161358","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the application of two-dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in-plane piezoelectricity but lack out-of-plane piezoelectricity. In this work, using first-principles calculation, by atomic substitution of penta-graphene (PG) with tiny out-of-plane piezoelectricity, we design and predict stable 2D X-PG (X = Si or Ge) semiconductors with excellent in-plane and out-of-plane piezoelectricity and extremely high in-plane hole mobility. Among them, Ge-PG exhibits better performance in all aspects with an in-plane strain piezoelectric coefficient <i>d</i><sub>11</sub> = 8.43 pm/V, an out-of-plane strain piezoelectric coefficient <i>d</i><sub>33</sub> = -3.63 pm/V, and in-plane hole mobility <i>μ<sub>h</sub></i> = 57.33 × 10<sup>3</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. By doping Si and Ge atoms, the negative Poisson's ratio of PG approaches zero and reaches a positive value, which is due to the gradual weakening of the structure's mechanical strength. The bandgaps of Si-PG (0.78 eV) and Ge-PG (0.89 eV) are much smaller than that of PG (2.20 eV), by 2.82 and 2.47 times, respectively. This indicates that the substitution of X atoms can regulate the bandgap of PG. Importantly, the physical mechanism of the out-of-plane piezoelectricity of these monolayers is revealed. The super-dipole-moment effect proposed in the previous work is proved to exist in PG and X-PG, i.e., it is proved that their out-of-plane piezoelectric stress coefficient <i>e</i><sub>33</sub> increases with the super-dipole-moment. The <i>e</i><sub>33</sub>-induced polarization direction is also consistent with the super-dipole-moment direction. X-PG is predicted to have prominent potential for nanodevices applied as electromechanical coupling systems: wearable, ultra-thin devices; high-speed electronic transmission devices; and so on.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161358","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the application of two-dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in-plane piezoelectricity but lack out-of-plane piezoelectricity. In this work, using first-principles calculation, by atomic substitution of penta-graphene (PG) with tiny out-of-plane piezoelectricity, we design and predict stable 2D X-PG (X = Si or Ge) semiconductors with excellent in-plane and out-of-plane piezoelectricity and extremely high in-plane hole mobility. Among them, Ge-PG exhibits better performance in all aspects with an in-plane strain piezoelectric coefficient d11 = 8.43 pm/V, an out-of-plane strain piezoelectric coefficient d33 = -3.63 pm/V, and in-plane hole mobility μh = 57.33 × 103 cm2 V-1 s-1. By doping Si and Ge atoms, the negative Poisson's ratio of PG approaches zero and reaches a positive value, which is due to the gradual weakening of the structure's mechanical strength. The bandgaps of Si-PG (0.78 eV) and Ge-PG (0.89 eV) are much smaller than that of PG (2.20 eV), by 2.82 and 2.47 times, respectively. This indicates that the substitution of X atoms can regulate the bandgap of PG. Importantly, the physical mechanism of the out-of-plane piezoelectricity of these monolayers is revealed. The super-dipole-moment effect proposed in the previous work is proved to exist in PG and X-PG, i.e., it is proved that their out-of-plane piezoelectric stress coefficient e33 increases with the super-dipole-moment. The e33-induced polarization direction is also consistent with the super-dipole-moment direction. X-PG is predicted to have prominent potential for nanodevices applied as electromechanical coupling systems: wearable, ultra-thin devices; high-speed electronic transmission devices; and so on.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.