{"title":"Enhancing the Performance of Ba<sub>x</sub>MnO<sub>3</sub> (x = 1, 0.9, 0.8 and 0.7) Perovskites as Catalysts for CO Oxidation by Decreasing the Ba Content.","authors":"Á Díaz-Verde, M J Illán-Gómez","doi":"10.3390/nano14161334","DOIUrl":null,"url":null,"abstract":"<p><p>Mixed oxides featuring perovskite-type structures (ABO<sub>3</sub>) offer promising catalytic properties for applications focused on the control of atmospheric pollution. In this work, a series of Ba<sub>x</sub>MnO<sub>3</sub> (x = 1, 0.9, 0.8 and 0.7) samples have been synthesized, characterized and tested as catalysts for CO oxidation reaction in conditions close to that found in the exhausts of last-generation automotive internal combustion engines. All samples were observed to be active as catalysts for CO oxidation during CO-TPRe tests, with Ba<sub>0.7</sub>MnO<sub>3</sub> (B0.7M) being the most active one, as it presents the highest amount of oxygen vacancies (which act as active sites for CO oxidation) and Mn (IV), which features the highest levels of reducibility and the best redox properties. B0.7M has also showcased a high stability during reactions at 300 °C, even though a slightly lower CO conversion is achieved during the second consecutive reaction cycle. This performance appears to be related to the decrease in the Mn (IV)/Mn (III) ratio.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161334","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed oxides featuring perovskite-type structures (ABO3) offer promising catalytic properties for applications focused on the control of atmospheric pollution. In this work, a series of BaxMnO3 (x = 1, 0.9, 0.8 and 0.7) samples have been synthesized, characterized and tested as catalysts for CO oxidation reaction in conditions close to that found in the exhausts of last-generation automotive internal combustion engines. All samples were observed to be active as catalysts for CO oxidation during CO-TPRe tests, with Ba0.7MnO3 (B0.7M) being the most active one, as it presents the highest amount of oxygen vacancies (which act as active sites for CO oxidation) and Mn (IV), which features the highest levels of reducibility and the best redox properties. B0.7M has also showcased a high stability during reactions at 300 °C, even though a slightly lower CO conversion is achieved during the second consecutive reaction cycle. This performance appears to be related to the decrease in the Mn (IV)/Mn (III) ratio.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.