Astrocyte-derived dominance winning reverses chronic stress-induced depressive behaviors.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Kyungchul Noh, Junyoung Oh, Woo-Hyun Cho, Minkyu Hwang, Sung Joong Lee
{"title":"Astrocyte-derived dominance winning reverses chronic stress-induced depressive behaviors.","authors":"Kyungchul Noh, Junyoung Oh, Woo-Hyun Cho, Minkyu Hwang, Sung Joong Lee","doi":"10.1186/s13041-024-01134-1","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with low social status are at heightened risk of major depressive disorder (MDD), and MDD also influences social status. While the interrelationship between MDD and social status is well-defined, the behavioral causality between these two phenotypes remains unexplored. Here, we investigated the behavioral relationships between depressive and dominance behaviors in male mice exposed to chronic restraint stress and the role of medial prefrontal cortex (mPFC) astrocytes in these behaviors. Chronic restraint stress induced both depressive and submissive behaviors. Chemogenetic mPFC astrocyte activation significantly enhanced dominance in chronic stress-induced submissive mice by increasing the persistence of defensive behavior, although it did not affect depressive behaviors. Notably, repetitive winning experiences following mPFC astrocyte stimulation exerted anti-depressive effects in chronic restraint stress-induced depressive mice. These data indicate that mPFC astrocyte-derived winning experience renders anti-depressive effects, and may offer a new strategy for treating depression caused by low status in social hierarchies by targeting mPFC astrocytes.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01134-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Individuals with low social status are at heightened risk of major depressive disorder (MDD), and MDD also influences social status. While the interrelationship between MDD and social status is well-defined, the behavioral causality between these two phenotypes remains unexplored. Here, we investigated the behavioral relationships between depressive and dominance behaviors in male mice exposed to chronic restraint stress and the role of medial prefrontal cortex (mPFC) astrocytes in these behaviors. Chronic restraint stress induced both depressive and submissive behaviors. Chemogenetic mPFC astrocyte activation significantly enhanced dominance in chronic stress-induced submissive mice by increasing the persistence of defensive behavior, although it did not affect depressive behaviors. Notably, repetitive winning experiences following mPFC astrocyte stimulation exerted anti-depressive effects in chronic restraint stress-induced depressive mice. These data indicate that mPFC astrocyte-derived winning experience renders anti-depressive effects, and may offer a new strategy for treating depression caused by low status in social hierarchies by targeting mPFC astrocytes.

源自星形胶质细胞的优势胜势可逆转慢性压力诱发的抑郁行为
社会地位低的人患重度抑郁症(MDD)的风险更高,而重度抑郁症也会影响社会地位。虽然重度抑郁症和社会地位之间的相互关系已经明确,但这两种表型之间的行为因果关系仍未得到探讨。在这里,我们研究了暴露于慢性束缚应激的雄性小鼠的抑郁行为和支配行为之间的行为关系,以及内侧前额叶皮层(mPFC)星形胶质细胞在这些行为中的作用。慢性束缚应激会诱发抑郁行为和顺从行为。化学基因mPFC星形胶质细胞激活通过增加防御行为的持续性,显著增强了慢性应激诱导的顺从型小鼠的优势地位,尽管它并不影响抑郁行为。值得注意的是,mPFC 星形胶质细胞刺激后的重复获胜经历对慢性束缚应激诱导的抑郁小鼠具有抗抑郁作用。这些数据表明,mPFC星形胶质细胞衍生的获胜体验具有抗抑郁作用,这可能为通过靶向mPFC星形胶质细胞治疗因社会等级中地位低下而导致的抑郁症提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信